60,432 research outputs found

    Knife-edge based measurement of the 4D transverse phase space of electron beams with picometer-scale emittance

    Full text link
    Precise manipulation of high brightness electron beams requires detailed knowledge of the particle phase space shape and evolution. As ultrafast electron pulses become brighter, new operational regimes become accessible with emittance values in the picometer range, with enormous impact on potential scientific applications. Here we present a new characterization method for such beams and demonstrate experimentally its ability to reconstruct the 4D transverse beam matrix of strongly correlated electron beams with sub-nanometer emittance and sub-micrometer spot size, produced with the HiRES beamline at LBNL. Our work extends the reach of ultrafast electron accelerator diagnostics into picometer-range emittance values, opening the way to complex nanometer-scale electron beam manipulation techniques

    A robust high-sensitivity algorithm for automated detection of proteins in two-dimensional electrophoresis gels

    Get PDF
    The automated interpretation of two-dimensional gel electrophoresis images used in protein separation and analysis presents a formidable problem in the detection and characterization of ill-defined spatial objects. We describe in this paper a hierarchical algorithm that provides a robust, high-sensitivity solution to this problem, which can be easily adapted to a variety of experimental situations. The software implementation of this algorithm functions as part of a complete package designed for general protein gel analysis applications

    Design and characterization of 90 GHz feedhorn-coupled TES polarimeter pixels in the SPTpol camera

    Full text link
    The SPTpol camera is a two-color, polarization-sensitive bolometer receiver, and was installed on the 10 meter South Pole Telescope in January 2012. SPTpol is designed to study the faint polarization signals in the Cosmic Microwave Background, with two primary scientific goals. One is to constrain the tensor-to-scalar ratio of perturbations in the primordial plasma, and thus constrain the space of permissible inflationary models. The other is to measure the weak lensing effect of large-scale structure on CMB polarization, which can be used to constrain the sum of neutrino masses as well as other growth-related parameters. The SPTpol focal plane consists of seven 84-element monolithic arrays of 150 GHz pixels (588 total) and 180 individual 90 GHz single-pixel modules. In this paper we present the design and characterization of the 90 GHz modules

    A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data

    Get PDF
    Wavelets are scaleable, oscillatory functions that deviate from zero only within a limited spatial regime and have average value zero. In addition to their use as source characterizers, wavelet functions are rapidly gaining currency within the source detection field. Wavelet-based source detection involves the correlation of scaled wavelet functions with binned, two-dimensional image data. If the chosen wavelet function exhibits the property of vanishing moments, significantly non-zero correlation coefficients will be observed only where there are high-order variations in the data; e.g., they will be observed in the vicinity of sources. In this paper, we describe the mission-independent, wavelet-based source detection algorithm WAVDETECT, part of the CIAO software package. Aspects of our algorithm include: (1) the computation of local, exposure-corrected normalized (i.e. flat-fielded) background maps; (2) the correction for exposure variations within the field-of-view; (3) its applicability within the low-counts regime, as it does not require a minimum number of background counts per pixel for the accurate computation of source detection thresholds; (4) the generation of a source list in a manner that does not depend upon a detailed knowledge of the point spread function (PSF) shape; and (5) error analysis. These features make our algorithm considerably more general than previous methods developed for the analysis of X-ray image data, especially in the low count regime. We demonstrate the algorithm's robustness by applying it to various images.Comment: Accepted for publication in Ap. J. Supp. (v. 138 Jan. 2002). 61 pages, 23 figures, expands to 3.8 Mb. Abstract abridged for astro-ph submissio

    Suppressing Diffusion-Mediated Exciton Annihilation in 2D Semiconductors Using the Dielectric Environment

    Full text link
    Atomically thin semiconductors such as monolayer MoS2 and WS2 exhibit nonlinear exciton-exciton annihilation at notably low excitation densities (below ~10 excitons/um2 in MoS2). Here, we show that the density threshold at which annihilation occurs can be tuned by changing the underlying substrate. When the supporting substrate is changed from SiO2 to Al2O3 or SrTiO3, the rate constant for second-order exciton-exciton annihilation, k_XX [cm2/s], is reduced by one or two orders of magnitude, respectively. Using transient photoluminescence microscopy, we measure the effective room-temperature exciton diffusion coefficient in chemical-treated MoS2 to be D = 0.06 +/- 0.01 cm2/s, corresponding to a diffusion length of LD = 350 nm for an exciton lifetime of {\tau} = 20 ns, which is independent of the substrate. These results, together with numerical simulations, suggest that the effective exciton-exciton annihilation radius monotonically decreases with increasing refractive index of the underlying substrate. Exciton-exciton annihilation limits the overall efficiency of 2D semiconductor devices operating at high exciton densities; the ability to tune these interactions via the dielectric environment is an important step toward more efficient optoelectronic technologies featuring atomically thin materials
    • …
    corecore