5 research outputs found

    Eddy Heat Conduction and Nonlinear Stability of a Darcy Lapwood System Analysed by the Finite Spectral Method

    Get PDF
    A finite Fourier transform is used to perform both linear and nonlinear stability analyses of a Darcy-Lapwood system of convective rolls. The method shows how many modes are unstable, the wave number instability band within each mode, the maximum growth rate (most critical) wave numbers on each mode, and the nonlinear growth rates for each amplitude as a function of the porous Rayleigh number. Single amplitude controls the nonlinear growth rates and thereby the physical flow rate and fluid velocity, on each mode. They are called the flak amplitudes. A discrete Fourier transform is used for numerical simulations and here frequency combinations appear that the traditional cut-off infinite transforms do not have. The discrete show a stationary solution in the weak instability phase, but when carried past 2 unstable modes they show fluctuating motion where all amplitudes except the flak may be zero on the average. This leads to a flak amplitude scaling process of the heat conduction, producing an eddy heat conduction coefficient where a Nu-RaL relationship is found. It fits better to experiments than previously found solutions but is lower than experiments

    On thermal convective instability in rotating fluids.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Abstract available on the PDF

    Proceedings of the First International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics

    Get PDF
    1st International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Kruger Park, 8-10 April 2002.This lecture is a principle-based review of a growing body of fundamental work stimulated by multiple opportunities to optimize geometric form (shape, structure, configuration, rhythm, topology, architecture, geography) in systems for heat and fluid flow. Currents flow against resistances, and by generating entropy (irreversibility) they force the system global performance to levels lower than the theoretical limit. The system design is destined to remain imperfect because of constraints (finite sizes, costs, times). Improvements can be achieved by properly balancing the resistances, i.e., by spreading the imperfections through the system. Optimal spreading means to endow the system with geometric form. The system construction springs out of the constrained maximization of global performance. This 'constructal' design principle is reviewed by highlighting applications from heat transfer engineering. Several examples illustrate the optimized internal structure of convection cooled packages of electronics. The origin of optimal geometric features lies in the global effort to use every volume element to the maximum, i.e., to pack the element not only with the most heat generating components, but also with the most flow, in such a way that every fluid packet is effectively engaged in cooling. In flows that connect a point to a volume or an area, the resulting structure is a tree with high conductivity branches and low-conductivity interstices.tm201

    2011 program of study : shear turbulence : onset and structure

    Get PDF
    The theme for the Program in Geophysical Fluid Dynamics for the summer of 2011 was Shear Turbulence: onset and structure. Ten days of principal lectures by FabianWale e and Rich Kerswell began the summer, and a large number of seminars on this and a variety of other topics then continued through the eighth week. These lectures are presented in these Proceedings and form (we believe) the most complete, connected account of this subject) Eleven fellows from around the globe helped to record the principal lectures, and each carried out a project of his/her own, presented in seminar during the tenth and nal week. All these lectures and projects are also presented in this Proceedings volume. The further seminars presented throughout the summer by visitors and (in some cases) by GFD faculty are also listed here. The popular Sears Lecture was given by L. Mahadevan. The title was On growth and form: geometry, physics and biology. It was indeed popular, drawing a large and enthusiastic audience.Funding was provided by the National Science Foundation under Grant No. OCE-0824636 and the Office of Naval Research under Contract No. N00014-09-1084

    10. 研究成果

    Get PDF
    10.1 研究成果の概要 [492]10.2 研究成果リスト一覧 [493
    corecore