30,056 research outputs found

    Ecosystem properties and principles of living systems as foundation for sustainable agriculture – Critical reviews of environmental assessment tools, key findings and questions from a course process

    Get PDF
    With increasing demands on limited resources worldwide, there is a growing interest in sustainable patterns of utilisation and production. Ecological agriculture is a response to these concerns. To assess progress and compliance, standard and comprehensive measures of resource requirements, impacts and agro-ecological health are needed. Assessment tools should also be rapid, standardized, userfriendly, meaningful to public policy and applicable to management. Fully considering these requirements confounds the development of integrated methods. Currently, there are many methodologies for monitoring performance, each with its own foundations, assumptions, goals, and outcomes, dependent upon agency agenda or academic orientation. Clearly, a concept of sustainability must address biophysical, ecological, economic, and sociocultural foundations. Assessment indicators and criteria, however, are generally limited, lacking integration, and at times in conflict with one another. A result is that certification criteria, indicators, and assessment methods are not based on a consistent, underlying conceptual framework and often lack a management focus. Ecosystem properties and principles of living systems, including self-organisation, renewal, embeddedness, emergence and commensurate response provide foundation for sustainability assessments and may be appropriate focal points for critical thinking in an evaluation of current methods and standards. A systems framework may also help facilitate a comprehensive approach and promote a context for meaningful discourse. Without holistic accounts, sustainable progress remains an illdefined concept and an elusive goal. Our intent, in the work with this report, was to use systems ecology as a pedagogic basis for learning and discussion to: - Articulate general and common characteristics of living systems. - Identify principles, properties and patterns inherent in natural ecosystems. - Use these findings as foci in a dialogue about attributes of sustainability to: a. develop a model for communicating scientific rationale. b. critically evaluate environmental assessment tools for application in land-use. c. propose appropriate criteria for a comprehensive assessment and expanded definition of ecological land use

    Integrating sciences to sustain urban ecosystem services

    Get PDF
    Effective water management within urban settings requires robust multidisciplinary understanding and an appreciation of the value added to urban spaces by providing multifunctional green-blue spaces. Multifunctional landscapes where ecosystem service provisions are ‘designed-in’ can help ‘transition’ cities to more sustainable environments which are more resilient to changing future conditions. With benefits ranging from the supply of water, habitat and energy to pollutant removal, amenity and opportunities for recreation, urban water bodies can provide a focal point for reconnecting humans and nature in otherwise densely built-up areas. Managing water within urban spaces is an essential infrastructure requirement but has historically been undertaken in isolation from other urban functions and spatial requirements. Increasingly, because of the limits of space and need to respond to new drivers (e.g. mitigation of diffuse pollution), more sustainable approaches to urban water management are being applied which can have multiple functions and benefits. This paper presents a review of ecosystem services associated with water, particularly those in urban environments, and uses the emerging language of ecosystem services to provide a framework for discussion. The range of supporting, provisioning, regulating and cultural ecosystem services associated with differing types of urban water bodies are identified. A matrix is then used to evaluate the results of a series of social, ecological and physical science studies co-located on a single stretch of a restored urban river. Findings identify the benefits of, but also barriers to, the implementation of a transdisciplinary research approach. For many, transdisciplinary research still appears to be on the edge of scientific respectability. In order to approach this challenge, it is imperative that we bring together discipline specific expertise to address fundamental and applied problems in a holistic way. The ecosystem services approach offers an exciting mechanism to support researchers in tackling research questions that require thinking beyond traditional scientific boundaries. The opportunity to fully exploit this approach to collaborative working should not be lost

    Agri-environmental and rural development indicators: a proposal

    Get PDF
    The present work is a proposal of a set of indicators prepared for the Ministry of Agriculture and Forestry. The indicators are to be used in monitoring the implementation of the Ministry's strategy for sustainable use of natural resources. The core of the present work is in setting up an indicator system, which is structured around specific themes. The focus is on the assessment of agricultural and rural development. At the end, an attempt is made to provide a comprehensive picture by considering the mutual inter-linkages between the various indicators

    Annual Report: 2008

    Get PDF
    I submit herewith the annual report from the Agricultural and Forestry Experiment Station, School of Natural Resources and Agricultural Sciences, University of Alaska Fairbanks, for the period ending December 31, 2008. This is done in accordance with an act of Congress, approved March 2, 1887, entitled, “An act to establish agricultural experiment stations, in connection with the agricultural college established in the several states under the provisions of an act approved July 2, 1862, and under the acts supplementary thereto,” and also of the act of the Alaska Territorial Legislature, approved March 12, 1935, accepting the provisions of the act of Congress. The research reports are organized according to our strategic plan, which focuses on high-latitude soils, high-latitude agriculture, natural resources use and allocation, ecosystems management, and geographic information. These areas cross department and unit lines, linking them and unifying the research. We have also included in our financial statement information on the special grants we receive. These special grants allow us to provide research and outreach that is targeted toward economic development in Alaska. Research conducted by our graduate and undergraduate students plays an important role in these grants and the impact they make on Alaska.Financial statement -- Grants -- Students -- Research reports: Partners, Facilities, and Programs; Geographic Information; High-Latitude Agriculture; High-Latitude Soils, Management of Ecosystems; Natural Resources Use and Allocation; Index to Reports -- Publications -- Facult

    Annual Report: 2009

    Get PDF
    I submit herewith the annual report from the Agricultural and Forestry Experiment Station, School of Natural Resources and Agricultural Sciences, University of Alaska Fairbanks, for the period ending December 31, 2009. This is done in accordance with an act of Congress, approved March 2, 1887, entitled, “An act to establish agricultural experiment stations, in connection with the agricultural college established in the several states under the provisions of an act approved July 2, 1862, and under the acts supplementary thereto,” and also of the act of the Alaska Territorial Legislature, approved March 12, 1935, accepting the provisions of the act of Congress. The research reports are organized according to our strategic plan, which focuses on high-latitude soils, high-latitude agriculture, natural resources use and allocation, ecosystems management, and geographic information. These areas cross department and unit lines, linking them and unifying the research. We have also included in our financial statement information on the special grants we receive. These special grants allow us to provide research and outreach that is targeted toward economic development in Alaska. Research conducted by our graduate and undergraduate students plays an important role in these grants and the impact they make on Alaska.Financial statement -- Grants -- Students -- Research Reports: Partners, Facilities, and Programs; Geography; High-Latitude Agriculture; High-Latitude Soils; Management of Ecosystems; Natural Resources Use and Allocation; Index to Reports -- Publications -- Facult

    Catching the Right Wave: Evaluating Wave Energy Resources and Potential Compatibility with Existing Marine and Coastal Uses

    Get PDF
    Many hope that ocean waves will be a source for clean, safe, reliable and affordable energy, yet wave energy conversion facilities may affect marine ecosystems through a variety of mechanisms, including competition with other human uses. We developed a decision-support tool to assist siting wave energy facilities, which allows the user to balance the need for profitability of the facilities with the need to minimize conflicts with other ocean uses. Our wave energy model quantifies harvestable wave energy and evaluates the net present value (NPV) of a wave energy facility based on a capital investment analysis. The model has a flexible framework and can be easily applied to wave energy projects at local, regional, and global scales. We applied the model and compatibility analysis on the west coast of Vancouver Island, British Columbia, Canada to provide information for ongoing marine spatial planning, including potential wave energy projects. In particular, we conducted a spatial overlap analysis with a variety of existing uses and ecological characteristics, and a quantitative compatibility analysis with commercial fisheries data. We found that wave power and harvestable wave energy gradually increase offshore as wave conditions intensify. However, areas with high economic potential for wave energy facilities were closer to cable landing points because of the cost of bringing energy ashore and thus in nearshore areas that support a number of different human uses. We show that the maximum combined economic benefit from wave energy and other uses is likely to be realized if wave energy facilities are sited in areas that maximize wave energy NPV and minimize conflict with existing ocean uses. Our tools will help decision-makers explore alternative locations for wave energy facilities by mapping expected wave energy NPV and helping to identify sites that provide maximal returns yet avoid spatial competition with existing ocean uses

    A Guide to Evaluating Marine Spatial Plans

    Get PDF
    Marine spatial plans are being developed in over 40 countries around the world, to distribute human activities in marine areas more sustainably and achieve ecological, social, and economic objectives. Monitoring and evaluation are often considered only after a plan has been developed. This guide will help marine planners and managers, monitor and evaluate the success of marine plans in achieving real results and outcomes. This report emphasizes the importance of early integration of monitoring and evaluation in the planning process, the importance of measurable and specific objectives, clear management actions, relevant indicators and targets, and involvement of stakeholders throughout the planning process.
    corecore