126 research outputs found

    A Comprehensive Assessment of Vehicle-to-Grid Systems and Their Impact to the Sustainability of Current Energy and Water Nexus

    Get PDF
    This dissertation aims to explore the feasibility of incorporating electric vehicles into the electric power grid and develop a comprehensive assessment framework to predict and evaluate the life cycle environmental, economic and social impact of the integration of Vehicle-to-Grid systems and the transportation-water-energy nexus. Based on the fact that electric vehicles of different classes have been widely adopted by both fleet operators and individual car owners, the following questions are investigated: 1. Will the life cycle environmental impacts due to vehicle operation be reduced? 2. Will the implementation of Vehicle-to-Grid systems bring environmental and economic benefits? 3. Will there be any form of air emission impact if large amounts of electric vehicles are adopted in a short time? 4. What is the role of the Vehicle-to-Grid system in the transportation-water-energy nexus? To answer these questions: First, the life cycle environmental impacts of medium-duty trucks in commercial delivery fleets are analyzed. Second, the operation mechanism of Vehicle-to-Grid technologies in association with charging and discharging of electric vehicles is researched. Third, the feasible Vehicle-to-Grid system is further studied taking into consideration the spatial and temporal variance as well as other uncertainties within the system. Then, a comparison of greenhouse gas emission mitigation of the Vehicle-to-Grid system and the additional emissions caused by electric vehicle charging through marginal electricity is analyzed. Finally, the impact of the Vehicle-to-Grid system in the transportation-water-energy nexus, and the underlying environmental, economic and social relationships are simulated through system dynamic modeling. The results provide holistic evaluations and spatial and temporal projections of electric vehicles, Vehicle-to-Grid systems, wind power integration, and the transportation-water-energy nexus

    SEEV4City INTERIM 'Summary of the State of the Art' report

    Get PDF
    This report summarizes the state-of-the-art on plug-in and full battery electric vehicles (EVs), smart charging and vehicle to grid (V2G) charging. This is in relation to the technology development, the role of EVs in CO2 reduction, their impact on the energy system as a whole, plus potential business models, services and policies to further promote the use of EV smart charging and V2G, relevant to the SEEV4-City project

    Vehicle-to-grid regulation based on a dynamic simulation of mobility behavior

    Get PDF
    This study establishes a new approach to analyzing the economic impacts of vehicle-to-grid (V2G) regulation by simulating the restrictions arising from un-predictable mobility requests by vehicle users. A case study for Germany using average daily values (in the following also called the "static" approach) and a dynamic simulation including different mobility use patterns are presented. Comparing the dynamic approach with the static approach reveals a significant difference in the power a vehicle can offer for regulation and provides insights into the necessary size of vehicle pools and the possible adaptations required in the regulation market to render V2G feasible. In a first step, the regulation of primary, secondary and tertiary control is ana-lyzed based on previous static methods used to investigate V2G and data from the four German regulation areas. It is shown that negative secondary control is economically the most beneficial for electric vehicles because it offers the high-est potential for charging with 'low-priced' energy from negative regulation. In a second step, a new method based on a Monte Carlo simulation using stochastic mobility behavior is applied to look at the negative secondary control market in more detail. Our simulation indicates that taking dynamic driving behavior into account results in a 40% reduction of the power available for regulation. Be-cause of the high value of power in the regulation market this finding has a strong impact on the resulting revenues. Further, we demonstrate that, for the data used, a pool size of 10,000 vehicles seems reasonable to balance the var-iation in driving behavior of each individual. In the case of the German regula-tion market, which uses monthly bids, a daily or hourly bid period is recom-mended. This adaptation would be necessary to provide individual regulation assuming that the vehicles are primarily used for mobility reasons and cannot deliver the same amount of power every hour of the week. --

    Vehicle-to-grid aggregator to support power grid and reduce electric vehicle charging cost

    Get PDF
    This paper presents an optimised bidirectional Vehicle-to-Grid (V2G) operation, based on a fleet of Electric Vehicles (EVs) connected to a distributed power system, through a network of charging stations. The system is able to perform day-ahead scheduling of EV charging/discharging to reduce EV ownership charging cost through participating in frequency and voltage regulation services. The proposed system is able to respond to real-time EV usage data and identify the required changes that must be made to the day-ahead energy prediction, further optimising the use of EVs to support both voltage and frequency regulation. An optimisation strategy is established for V2G scheduling, addressing the initial battery State Of Charge (SOC), EV plug-in time, regulation prices, desired EV departure time, battery degradation cost and vehicle charging requirements. The effectiveness of the proposed system is demonstrated using a standardized IEEE 33-node distribution network integrating five EV charging stations. Two case studies have been undertaken to verify the contribution of this advanced energy supervision approach. Comprehensive simulation results clearly show an opportunity to provide frequency and voltage support while concurrently reducing EV charging costs, through the integration of V2G technology, especially during on-peak periods when the need for active and reactive power is high

    Integration of Massive Plug-in Hybrid Electric Vehicles into Power Distribution Systems: Modeling, Optimization, and Impact Analysis

    Get PDF
    With the development of vehicle-to-grid (V2G) technology, it is highly promising to use plug-in hybrid electric vehicles (PHEVs) as a new form of distributed energy resources. However, the uncertainties in the power market and the conflicts among different stakeholders make the integration of PHEVs a highly challenging task. Moreover, the integration of PHEVs may lead to negative effects on the power grid performance if the PHEV fleets are not properly managed. This dissertation studies various aspects of the integration of PHEVs into power distribution systems, including the PHEV load demand modeling, smart charging algorithms, frequency regulation, reliability-differentiated service, charging navigation, and adequacy assessment of power distribution systems. This dissertation presents a comprehensive methodology for modeling the load demand of PHEVs. Based on this stochastic model of PHEV, a two-layer evolution strategy particle swarm optimization (ESPSO) algorithm is proposed to integrate PHEVs into a residential distribution grid. This dissertation also develops an innovative load frequency control system, and proposes a hierarchical game framework for PHEVs to optimize their charging process and participate in frequency regulation simultaneously. The potential of using PHEVs to enable reliability-differentiated service in residential distribution grids has been investigated in this dissertation. Further, an integrated electric vehicle (EV) charging navigation framework has been proposed in this dissertation which takes into consideration the impacts from both the power system and transportation system. Finally, this dissertation proposes a comprehensive framework for adequacy evaluation of power distribution networks with PHEVs penetration. This dissertation provides innovative, viable business models for enabling the integration of massive PHEVs into the power grid. It helps evolve the current power grid into a more reliable and efficient system

    Integrated Energy Management of a Plug-in Electric Vehicle in Residential Distribution Systems with Renewables

    No full text
    International audienceAccording to innovation in grid connected transportation industry and with ever increasing concerns on environmental issues and clean energy, electric vehicles (EVs) and hybrid electric vehicles (HEVs) with low noise, zero emission, and high efficiency have attracted more and more attention of researchers, governments and industries, they are becoming the most likely fleets to replace gasoline vehicles in future power systems. In addition to the approved advantages for transportation, EVs have the potential to provide other benefits within the connected residential distribution to micro-grids and smart grids as part of a vehicle-to-grid (V2G) system, knowing that in future systems residential distribution can be seen as an energy resource with decentralized and autonomous decisions in the energy management called smart house or prosumer. They can participate effectively in helping to balance supply and demand by valley filling and peak shaving. The EV battery can be charged during low demand and the stored power can be fed power back into the micro-grid during high-demand periods, providing a spinning reserve to dump short power demand changes. V2G may also be used to buffer renewable energy sources, such as photovoltaic generators, by storing excess energy produced during illumination periods, and feeding it back into the grid during high-load periods, thus effectively stabilizing the intermittency of solar power. In this context, this paper describes an energy management system for a smart house based on hybrid PV-battery and V2G. Keywords—Vehicle-to-grid (V2G), vehicle-to-home (V2H), residential distribution, smart house, balance supply and demand

    Technical investigation on V2G, S2V, and V2I for next generation smart city planning

    Get PDF
    The paper investigates a few of the major areas of the next generation technological advancement, “smart city planning concept”. The areas that the paper focuses are vehicle to grid (V2G), sun to vehicle (S2V), and vehicle to infrastructure (V2I). For the bi-directional crowd energy single entity concept, V2G and building to grid (B2G) are the primary parts of distributed renewable generation (DRG) under smart living. This research includes an in-depth overview of this three major areas. Next, the research conducts a case analysis of V2G, S2V, and V2I along with their possible limitations in order to find out the novel solutions for future development both for academia and industry levels. Lastly, few possible solutions have been proposed to minimize the limitations and to develop the existing system for future expansion

    Analysis of smart energy systems and high participation of V2G impact for the ecuadorian 100% renewable energy system by 2050

    Get PDF
    This research presents a 100% renewable energy (RE) scenario by 2050 with a high share of electric vehicles on the grid (V2G) developed in Ecuador with the support of the EnergyPLAN analysis tool. Hour-by-hour data iterations were performed to determine solutions among various features, including energy storage, V2G connections that spanned the distribution system, and long-term evaluation. The high participation in V2G connections keeps the electrical system available; meanwhile, the high proportions of variable renewable energy are the pillar of the joint electrical system. The layout of the sustainable mobility scenario and the high V2G participation maintain the balance of the electrical system during most of the day, simplifying the storage equipment requirements. Consequently, the influence of V2G systems on storage is a significant result that must be considered in the energy transition that Ecuador is developing in the long term. The stored electricity will not only serve as storage for future grid use. Additionally, the V2G batteries serve as a buffer between generation from diversified renewable sources and the end-use stage.Peer ReviewedPostprint (published version

    Airport electrified ground support equipment for providing ancillary services to the grid

    Get PDF
    The ground handling operations are used in airports for handling activities and processing passengers with the help of specially designed vehicles known as ground support equipment. The ground support equipment (GSE) is being parked after serving a flight until the next flight. The GSE idle duration between flights is depending on the flight schedule and can be turned into a profit source. This paper is presenting a methodology for electrified ground support equipment (EGSE) for providing frequency regulation ancillary services to the grid through an aggregator. The passengers flight schedule is considered to increase the vehicles’ availability to participate in the frequency regulation ancillary services market. The optimization model is formulated to maximize the airport profitability by using aggregation of EGSE in frequency regulation market. The results show that the EGSE provides a significant profit by participating in frequency regulation ancillary service with the use of V2G mode
    • …
    corecore