132 research outputs found

    Enabling electronic prognostics using thermal data

    Get PDF
    Prognostics is a process of assessing the extent of deviation or degradation of a product from its expected normal operating condition, and then, based on continuous monitoring, predicting the future reliability of the product. By being able to determine when a product will fail, procedures can be developed to provide advanced warning of failures, optimize maintenance, reduce life cycle costs, and improve the design, qualification and logistical support of fielded and future systems. In the case of electronics, the reliability is often influenced by thermal loads, in the form of steady-state temperatures, power cycles, temperature gradients, ramp rates, and dwell times. If one can continuously monitor the thermal loads, in-situ, this data can be used in conjunction with precursor reasoning algorithms and stress-and-damage models to enable prognostics. This paper discusses approaches to enable electronic prognostics and provides a case study of prognostics using thermal data.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Failure analysis informing intelligent asset management

    Get PDF
    With increasing demands on the UK’s power grid it has become increasingly important to reform the methods of asset management used to maintain it. The science of Prognostics and Health Management (PHM) presents interesting possibilities by allowing the online diagnosis of faults in a component and the dynamic trending of its remaining useful life (RUL). Before a PHM system can be developed an extensive failure analysis must be conducted on the asset in question to determine the mechanisms of failure and their associated data precursors that precede them. In order to gain experience in the development of prognostic systems we have conducted a study of commercial power relays, using a data capture regime that revealed precursors to relay failure. We were able to determine important failure precursors for both stuck open failures caused by contact erosion and stuck closed failures caused by material transfer and are in a position to develop a more detailed prognostic system from this base. This research when expanded and applied to a system such as the power grid, presents an opportunity for more efficient asset management when compared to maintenance based upon time to replacement or purely on condition

    Development of an aeronautical electromechanical actuator with real time health monitoring capability

    Get PDF
    Development and implementation of EMAs has increased rapidly during the last years in the context of the “more electrical aircraft”. One of the main technical key issues for the EMA implementation is the jamming. It can appear due to metalmetal contact of load transmission (in gearboxes, bearings and ball/roller screws). This problem penalizes the reliability although with very low failure rate. To overcome this problem in aeronautical EMAs are actually several ways investigated, where one of the most attractive and with more promising is the implementation of advanced monitoring systems. This implementation of “smart” monitoring systems will imply a clear economical profit in the final product and in the complete system: envisaged benefits will be lower maintenance costs with higher reliability, instead of increasing maintenance costs and decreasing reliability for classical components without Health Monitoring. At the end, the selection of the Health Monitoring and Management system will be able to establish different levels of validation: failure detection, diagnostic and prognostic; this will provide a proactive maintenance strategy in order to replace EMA before failure. A demonstrator prototype of an innovative electromechanical actuator with real time health monitoring capability has been designed and developed by SENER. This actuator type can be taken as a reference for typical secondary control surface applications. This development is based on previous work performed by SENER in AWIATOR project where one of the tasks was the design and calculation of the new flap trailing edge with MINITEDs. In addition, this work included the supports and linkages of the current actuator to the MINITED. This compact electromechanical actuator shows innovations with respect to current state-of-the-art electrical actuators as lightness and compactness of the resulting actuator, with high power density within small dimensions. As an added value, an additional plug module is under development for real time health monitoring to detect potential working incidents: “smart actuator”. One of the additional key points will be the health management in order to solve the introduction of these systems in EMAs, and to check the compatibility with the aircraft systems

    On-line health monitoring of passive electronic components using digitally controlled power converter

    Get PDF
    This thesis presents System Identification based On-Line Health Monitoring to analyse the dynamic behaviour of the Switch-Mode Power Converter (SMPC), detect, and diagnose anomalies in passive electronic components. The anomaly detection in this research is determined by examining the change in passive component values due to degradation. Degradation, which is a long-term process, however, is characterised by inserting different component values in the power converter. The novel health-monitoring capability enables accurate detection of passive electronic components despite component variations and uncertainties and is valid for different topologies of the switch-mode power converter. The need for a novel on-line health-monitoring capability is driven by the need to improve unscheduled in-service, logistics, and engineering costs, including the requirement of Integrated Vehicle Health Management (IVHM) for electronic systems and components. The detection and diagnosis of degradations and failures within power converters is of great importance for aircraft electronic manufacturers, such as Thales, where component failures result in equipment downtime and large maintenance costs. The fact that existing techniques, including built-in-self test, use of dedicated sensors, physics-of-failure, and data-driven based health-monitoring, have yet to deliver extensive application in IVHM, provides the motivation for this research ... [cont.]

    AN OPTIONS APPROACH TO QUANTIFY THE VALUE OF DECISIONS AFTER PROGNOSTIC INDICATION

    Get PDF
    Safety, mission and infrastructure critical systems have started adopting prognostics and health management, a discipline consisting of technologies and methods to assess the reliability of a product in its actual life-cycle conditions to determine the advent of failure and mitigate system risks. The output from a prognostic system is the remaining useful life of the host system; it gives the decision-maker lead-time and flexibility in maintenance. Examples of flexibility include delaying maintenance actions to use up the remaining useful life and halting the operation of the system to avoid critical failure. Quantifying the value of flexibility enables decision support at the system level, and provides a solution to the fundamental tradeoff in maintenance of systems with prognostics: minimize the remaining useful life thrown while concurrently minimizing the risk of failure. While there are cost-benefit models to quantify the value of implementing prognostics, they are applicable to the fleet level, they do not incorporate the value of decisions after prognostic indication (value of flexibility or contingency actions), and do not use PHM information for dynamic maintenance scheduling. This dissertation develops a decision support model based on `options' theory- a financial derivative tool extended to real assets - to quantify maintenance decisions after a remaining useful life prediction. A hybrid methodology based on Monte Carlo simulations and decision trees is developed. The methodology incorporates the value of contingency actions when assessing the benefits of PHM. The model is extended and combined with least squares Monte Carlo methods to quantify the option to wait to perform maintenance; it represents the value obtained from PHM at the system level. The methodology also allows quantifying the benefits of PHM for individualized maintenance policies for systems in real-time, and to set a dynamic maintenance threshold based on PHM information. This work is the first known to quantify the flexibility enabled by PHM and to address the cost-benefit-risk ramifications after prognostic indication at the system level. The contributions of the dissertation are demonstrated on data for wind farms

    Merging Data Sources to Predict Remaining Useful Life – An Automated Method to Identify Prognostic Parameters

    Get PDF
    The ultimate goal of most prognostic systems is accurate prediction of the remaining useful life (RUL) of individual systems or components based on their use and performance. This class of prognostic algorithms is termed Degradation-Based, or Type III Prognostics. As equipment degrades, measured parameters of the system tend to change; these sensed measurements, or appropriate transformations thereof, may be used to characterize degradation. Traditionally, individual-based prognostic methods use a measure of degradation to make RUL estimates. Degradation measures may include sensed measurements, such as temperature or vibration level, or inferred measurements, such as model residuals or physics-based model predictions. Often, it is beneficial to combine several measures of degradation into a single parameter. Selection of an appropriate parameter is key for making useful individual-based RUL estimates, but methods to aid in this selection are absent in the literature. This dissertation introduces a set of metrics which characterize the suitability of a prognostic parameter. Parameter features such as trendability, monotonicity, and prognosability can be used to compare candidate prognostic parameters to determine which is most useful for individual-based prognosis. Trendability indicates the degree to which the parameters of a population of systems have the same underlying shape. Monotonicity characterizes the underlying positive or negative trend of the parameter. Finally, prognosability gives a measure of the variance in the critical failure value of a population of systems. By quantifying these features for a given parameter, the metrics can be used with any traditional optimization technique, such as Genetic Algorithms, to identify the optimal parameter for a given system. An appropriate parameter may be used with a General Path Model (GPM) approach to make RUL estimates for specific systems or components. A dynamic Bayesian updating methodology is introduced to incorporate prior information in the GPM methodology. The proposed methods are illustrated with two applications: first, to the simulated turbofan engine data provided in the 2008 Prognostics and Health Management Conference Prognostics Challenge and, second, to data collected in a laboratory milling equipment wear experiment. The automated system was shown to identify appropriate parameters in both situations and facilitate Type III prognostic model development

    ELECTRONIC PROGNOSTICS AND HEALTH MANAGEMENT: A RETURN ON INVESTMENT ANALYSIS

    Get PDF
    Prognostics and Health Management (PHM) provides the potential to lower sustainment costs, to improve maintenance decision-making, and to provide product usage feedback into the product design and validation process. A case analysis was developed using a discrete event simulation to determine the benefits and the potential cost avoidance resulting from the use of PHM in avionics. The model allows for variability in implementation costs, operational profile, false alarms, random failure rates, and system composition to enable a comprehensive calculation of the Return on Investment (ROI) in support of acquisition decision making. The case analysis compared the life cycle costs using unscheduled maintenance to the life cycle costs using two types of PHM approaches
    corecore