1,142 research outputs found

    Urban biodiversity conservation planning integrating the analysis of green space structure and functional connection

    Get PDF
    The process of urbanization and population growth lead to the fragmentation of biological habitat and the loss of biodiversity. It is of great significance to use effective models and indicators to evaluate landscape connectivity and construct green space network for habitat restoration and biodiversity conservation. Taking Fengtai District of Beijing as an example, firstly, the optimal distance threshold of green space construction suitable for biological migration is discussed by using the connectivity index based on graph theory, and the source patches are selected according to the evaluation results of landscape connectivity. Secondly, the resistance surface is constructed by using the minimum cost path model, and the potential connection path of species migration is determined by Linkage Mapper tool. Finally, according to the relative importance of patch and corridor in the quantitative source of current density, the “pinch” area, which is very important to species migration, is identified, and the model recognition results are compared with the empirical observation results of remote sensing satellite map and bird abundance. The results showed that the ecological base of green space in the western part of the study area was good, which provided the main habitat for species, and the patch fragmentation of green space in the central and eastern regions was serious, so it was necessary to increase urban green space as a stepping stone for species migration in pinch areas. The circuit model focusing on species diffusion is introduced in the study, which makes up for the lack of urban green space network construction method at the level of biodiversity conservation, clarifies the present situation of habitat quality and the future development of green space network in Fengtai District of Beijing, and provides scientific reference for the optimization of regional green space pattern and biodiversity conservation planning strategy

    The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China

    Get PDF
    The wind power industry has developed rapidly in China, but the effect of wind power projects on the ecosystem is far from being clearly understood. The objective of this study is to evaluate the negative impact of wind power plants on the ecosystem. In this research, least-cost distance and least-cost path models were employed to establish potential ecological corridors based on the resistance at the site of the wind power projects––which is located in the ecological function area in Qinyuan, South Shanxi Province, China. The landscape connectivity was evaluated using a set of connectivity indices. In addition, the impact on the corridor patency, length, and the connectivity between ecological corridors were analyzed. The results showed that the wind power projects could not only significantly increase the migration resistance that hampers the formation of ecological corridors of the species at the landscape scale, but also had an obvious cutting effect on the landscape––resulting in an increase in the length of the ecological corridors and a decrease in corridor patency and landscape connectivity. There was also a positive relationship between the increase in length and the distance between the source patches. In addition, the connectivity was enhanced with the increase in distance threshold. This study evaluated the ecological impact of onshore wind power projects at the landscape level, filling the gap in research on landscape ecology, especially in the protected area with key ecological function. Meanwhile, the results are beneficial to guide the location selection for wind power projects and minimize their negative impact on the key ecological corridors

    Assessing growth scenarios for their landscape ecological security impact, using the SLEUTH urban growth model

    Get PDF
    Rapid urban population growth and the associated expansion of urban areas in China (as elsewhere) present significant environmental challenges, and threaten urban and regional ecological security. Modeling land use changes is one way to aid the management of cities. Using remote sensing and geographic information system (GIS) software platforms, land use data for the years 1989, 1996, 2004, and 2010 for the area inside the Jinan third ring-road were interpreted. An urban green space network was developed, as a core strategy to ensure landscape ecological security, and subjected to ecological sensitivity analysis. The green space network and the result of the ecological sensitivity analysis were integrated into the exclusion/attraction layer of an existing cellular automaton model, SLEUTH (Slope, Land use, Exclusion/attraction, Urban extent, Transportation, and Hillshade). A development scenario for land use change was constructed that integrates these Landscape Ecological Security Development (LESD) strategies and reveals trends in urban growth for the different development scenarios between 2011 and 2040. The results of the LESD scenario were compared with those from two other development scenarios: the Historical Trend Development (HTD) and the Transit-Oriented Development (TOD). The study revealed three significant findings. First, change in the urban area in the study will be dominated by urban edge growth and transit-oriented development, while spontaneous and cluster growth were not obvious. Second, the growth rate of built-up land in the urban area in all three scenarios exhibits emerging trends. The growth rate, according to the LESD scenario, is significantly lower than that for the HTD and TOD scenarios, and encroachment into natural ecological space (such as woodlands, water, and agricultural land) is less than that in the other two scenarios. This result indicates that the LESD scenario can protect natural ecological spaces effectively and can significantly reduce the ecological security risk. This aligns with the integration of smart growth and smart conservation. Third, integrating LESD into the SLEUTH model results in the ability to evaluate urban development policies and can help characterize development strategies for urban landscape ecological security. The results of this study provide reference data and a basis for decision-making for the future management of urban growth, urban planning, and land use planning

    Climate Change and Environmental Sustainability-Volume 4

    Get PDF
    Anthropogenic activities are significant drivers of climate change and environmental degradation. Such activities are particularly influential in the context of the land system that is an important medium connecting earth surface, atmospheric dynamics, ecological systems, and human activities. Assessment of land use land cover changes and associated environmental, economic, and social consequences is essential to provide references for enhancing climate resilience and improving environmental sustainability. On the one hand, this book touches on various environmental topics, including soil erosion, crop yield, bioclimatic variation, carbon emission, natural vegetation dynamics, ecosystem and biodiversity degradation, and habitat quality caused by both climate change and earth surface modifications. On the other hand, it explores a series of socioeconomic facts, such as education equity, population migration, economic growth, sustainable development, and urban structure transformation, along with urbanization. The results of this book are of significance in terms of revealing the impact of land use land cover changes and generating policy recommendations for land management. More broadly, this book is important for understanding the interrelationships among life on land, good health and wellbeing, quality education, climate actions, economic growth, sustainable cities and communities, and responsible consumption and production according to the United Nations Sustainable Development Goals. We expect the book to benefit decision makers, practitioners, and researchers in different fields, such as climate governance, crop science and agricultural engineering, forest ecosystem, land management, urban planning and design, urban governance, and institutional operation.Prof. Bao-Jie He acknowledges the Project NO. 2021CDJQY-004 supported by the Fundamental Research Funds for the Central Universities and the Project NO. 2022ZA01 supported by the State Key Laboratory of Subtropical Building Science, South China University of Technology, China. We appreciate the assistance of Mr. Lifeng Xiong, Mr. Wei Wang, Ms. Xueke Chen, and Ms. Anxian Chen at School of Architecture and Urban Planning, Chongqing University, China

    Afforestation and Reforestation: Drivers, Dynamics, and Impacts

    Get PDF
    Afforestation/reforestation (or forestation) has been implemented worldwide as an effective measure towards sustainable ecosystem services and addresses global environmental problems such as climate change. The conversion of grasslands, croplands, shrublands, or bare lands to forests can dramatically alter forest water, energy, and carbon cycles and, thus, ecosystem services (e.g., carbon sequestration, soil erosion control, and water quality improvement). Large-scale afforestation/reforestation is typically driven by policies and, in turn, can also have substantial socioeconomic impacts. To enable success, forestation endeavors require novel approaches that involve a series of complex processes and interdisciplinary sciences. For example, exotic or fast-growing tree species are often used to improve soil conditions of degraded lands or maximize productivity, and it often takes a long time to understand and quantify the consequences of such practices at watershed or regional scales. Maintaining the sustainability of man-made forests is becoming increasingly challenging under a changing environment and disturbance regime changes such as wildland fires, urbanization, drought, air pollution, climate change, and socioeconomic change. Therefore, this Special Issue focuses on case studies of the drivers, dynamics, and impacts of afforestation/reforestation at regional, national, or global scales. These new studies provide an update on the scientific advances related to forestation. This information is urgently needed by land managers and policy makers to better manage forest resources in today’s rapidly changing environments
    • …
    corecore