3,118 research outputs found

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author

    Eccentric connectivity index

    Full text link
    The eccentric connectivity index ξc\xi^c is a novel distance--based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξc(G)=vV(G)deg(v)ϵ(v)\xi^c (G) = \sum_{v \in V (G)} deg (v) \cdot \epsilon (v)\,, where deg(v)deg (v) and ϵ(v)\epsilon (v) denote the vertex degree and eccentricity of vv\,, respectively. We survey some mathematical properties of this index and furthermore support the use of eccentric connectivity index as topological structure descriptor. We present the extremal trees and unicyclic graphs with maximum and minimum eccentric connectivity index subject to the certain graph constraints. Sharp lower and asymptotic upper bound for all graphs are given and various connections with other important graph invariants are established. In addition, we present explicit formulae for the values of eccentric connectivity index for several families of composite graphs and designed a linear algorithm for calculating the eccentric connectivity index of trees. Some open problems and related indices for further study are also listed.Comment: 25 pages, 5 figure

    On a Conjecture of EM Stein on the Hilbert Transform on Vector Fields

    Full text link
    Let v v be a smooth vector field on the plane, that is a map from the plane to the unit circle. We study sufficient conditions for the boundedness of the Hilbert transform \operatorname H_{v, \epsilon}f(x) := \text{p.v.}\int_{-\epsilon}^ \epsilon f(x-yv(x)) \frac{dy}y where ϵ \epsilon is a suitably chosen parameter, determined by the smoothness properties of the vector field. It is a conjecture, due to E.\thinspace M.\thinspace Stein, that if v v is Lipschitz, there is a positive ϵ \epsilon for which the transform above is bounded on L2 L ^{2}. Our principal result gives a sufficient condition in terms of the boundedness of a maximal function associated to v v. This sufficient condition is that this new maximal function be bounded on some Lp L ^{p}, for some 1<p<2 1<p<2. We show that the maximal function is bounded from L2 L ^{2} to weak L2 L ^{2} for all Lipschitz maximal function. The relationship between our results and other known sufficient conditions is explored.Comment: 92 pages, 20+ figures. Final version of the paper. To appear in Memoirs AM
    corecore