52 research outputs found

    Semiquantum key distribution using entangled states

    Full text link
    Recently, Boyer et al. presented a novel semiquantum key distribution protocol [M. Boyer, D. Kenigsberg, and T. Mor, Phys. Rev. Lett. 99, 140501 (2007)], by using four quantum states, each of which is randomly prepared by Z basis or X basis. Here we present a semiquantum key distribution protocol by using entangled states in which quantum Alice shares a secret key with classical Bob. We also show the protocol is secure against eavesdropping.Comment: 6 page

    Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue

    Full text link
    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a fundamental question in context of a large number problems- how much quantumness is (how many quantum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.Comment: 19 pages 1 figur

    Quantum e-commerce: A comparative study of possible protocols for online shopping and other tasks related to e-commerce

    Full text link
    A set of quantum protocols for online shopping is proposed and analyzed to establish that it is possible to perform secure online shopping using different types of quantum resources. Specifically, a single photon based, a Bell state based and two 3-qubit entangled state based quantum online shopping schemes are proposed. The Bell state based scheme, being a completely orthogonal state based protocol, is fundamentally different from the earlier proposed schemes which were based on conjugate coding. One of the 3-qubit entangled state based scheme is build on the principle of entanglement swapping which enables us to accomplish the task without transmission of the message encoded qubits through the channel. Possible ways of generalizing the entangled state based schemes proposed here to the schemes which use multiqubit entangled states is also discussed. Further, all the proposed protocols are shown to be free from the limitations of the recently proposed protocol of Huang et al. (Quantum Inf. Process. 14, 2211-2225, 2015) which allows the buyer (Alice) to change her order at a later time (after initially placing the order and getting it authenticated by the controller). The proposed schemes are also compared with the existing schemes using qubit efficiency.Comment: It's shown that quantum e-commerce is not a difficult task, and it can be done in various way

    Attacks against a Simplified Experimentally Feasible Semiquantum Key Distribution Protocol

    Full text link
    A semiquantum key distribution (SQKD) protocol makes it possible for a quantum party and a classical party to generate a secret shared key. However, many existing SQKD protocols are not experimentally feasible in a secure way using current technology. An experimentally feasible SQKD protocol, "classical Alice with a controllable mirror" (the "Mirror protocol"), has recently been presented and proved completely robust, but it is more complicated than other SQKD protocols. Here we prove a simpler variant of the Mirror protocol (the "simplified Mirror protocol") to be completely non-robust by presenting two possible attacks against it. Our results show that the complexity of the Mirror protocol is at least partly necessary for achieving robustness.Comment: 9 page

    Semiquantum secret sharing by using x-type states

    Full text link
    In this paper, a semiquantum secret sharing (SQSS) protocol based on x-type states is proposed, which can accomplish the goal that only when two classical communicants cooperate together can they extract the shared secret key of a quantum communicant. Detailed security analysis turns out that this protocol can resist the participant attack and the outside attack. This protocol has some merits: (1) it only requires one kind of quantum entangled state as the initial quantum resource; (2) it doesn't employ quantum entanglement swapping or unitary operations; and (3) it needn't share private keys among different participants beforehand.Comment: 18 pages, 1 figure, 3 table

    Comment on "Semiquantum-key distribution using less than four quantum states"

    Full text link
    Comment on Phys. Rev. A 79, 052312 (2009), http://pra.aps.org/abstract/PRA/v79/i5/e05231
    • …
    corecore