71,332 research outputs found

    Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras

    Get PDF
    Color-depth cameras (RGB-D cameras) have become the primary sensors in most robotics systems, from service robotics to industrial robotics applications. Typical consumer-grade RGB-D cameras are provided with a coarse intrinsic and extrinsic calibration that generally does not meet the accuracy requirements needed by many robotics applications (e.g., highly accurate 3D environment reconstruction and mapping, high precision object recognition and localization, ...). In this paper, we propose a human-friendly, reliable and accurate calibration framework that enables to easily estimate both the intrinsic and extrinsic parameters of a general color-depth sensor couple. Our approach is based on a novel two components error model. This model unifies the error sources of RGB-D pairs based on different technologies, such as structured-light 3D cameras and time-of-flight cameras. Our method provides some important advantages compared to other state-of-the-art systems: it is general (i.e., well suited for different types of sensors), based on an easy and stable calibration protocol, provides a greater calibration accuracy, and has been implemented within the ROS robotics framework. We report detailed experimental validations and performance comparisons to support our statements

    Needle Tip Force Estimation using an OCT Fiber and a Fused convGRU-CNN Architecture

    Full text link
    Needle insertion is common during minimally invasive interventions such as biopsy or brachytherapy. During soft tissue needle insertion, forces acting at the needle tip cause tissue deformation and needle deflection. Accurate needle tip force measurement provides information on needle-tissue interaction and helps detecting and compensating potential misplacement. For this purpose we introduce an image-based needle tip force estimation method using an optical fiber imaging the deformation of an epoxy layer below the needle tip over time. For calibration and force estimation, we introduce a novel deep learning-based fused convolutional GRU-CNN model which effectively exploits the spatio-temporal data structure. The needle is easy to manufacture and our model achieves a mean absolute error of 1.76 +- 1.5 mN with a cross-correlation coefficient of 0.9996, clearly outperforming other methods. We test needles with different materials to demonstrate that the approach can be adapted for different sensitivities and force ranges. Furthermore, we validate our approach in an ex-vivo prostate needle insertion scenario.Comment: Accepted for Publication at MICCAI 201

    Dynamic update of a virtual cell for programming and safe monitoring of an industrial robot

    Get PDF
    A hardware/software architecture for robot motion planning and on-line safe monitoring has been developed with the objective to assure high flexibility in production control, safety for workers and machinery, with user-friendly interface. The architecture, developed using Microsoft Robotics Developers Studio and implemented for a six-dof COMAU NS 12 robot, established a bidirectional communication between the robot controller and a virtual replica of the real robotic cell. The working space of the real robot can then be easily limited for safety reasons by inserting virtual objects (or sensors) in such a virtual environment. This paper investigates the possibility to achieve an automatic, dynamic update of the virtual cell by using a low cost depth sensor (i.e., a commercial Microsoft Kinect) to detect the presence of completely unknown objects, moving inside the real cell. The experimental tests show that the developed architecture is able to recognize variously shaped mobile objects inside the monitored area and let the robot stop before colliding with them, if the objects are not too small

    A Proposal for Semantic Map Representation and Evaluation

    Get PDF
    Semantic mapping is the incremental process of “mapping” relevant information of the world (i.e., spatial information, temporal events, agents and actions) to a formal description supported by a reasoning engine. Current research focuses on learning the semantic of environments based on their spatial location, geometry and appearance. Many methods to tackle this problem have been proposed, but the lack of a uniform representation, as well as standard benchmarking suites, prevents their direct comparison. In this paper, we propose a standardization in the representation of semantic maps, by defining an easily extensible formalism to be used on top of metric maps of the environments. Based on this, we describe the procedure to build a dataset (based on real sensor data) for benchmarking semantic mapping techniques, also hypothesizing some possible evaluation metrics. Nevertheless, by providing a tool for the construction of a semantic map ground truth, we aim at the contribution of the scientific community in acquiring data for populating the dataset

    A Feasibility Study on the Use of a Structured Light Depth-Camera for Three-Dimensional Body Measurements of Dairy Cows in Free-Stall Barns

    Get PDF
    Frequent checks on livestock\u2019s body growth can help reducing problems related to cow infertility or other welfare implications, and recognizing health\u2019s anomalies. In the last ten years, optical methods have been proposed to extract information on various parameters while avoiding direct contact with animals\u2019 body, generally causes stress. This research aims to evaluate a new monitoring system, which is suitable to frequently check calves and cow\u2019s growth through a three-dimensional analysis of their bodies\u2019 portions. The innovative system is based on multiple acquisitions from a low cost Structured Light Depth-Camera (Microsoft Kinect\u2122 v1). The metrological performance of the instrument is proved through an uncertainty analysis and a proper calibration procedure. The paper reports application of the depth camera for extraction of different body parameters. Expanded uncertainty ranging between 3 and 15 mm is reported in the case of ten repeated measurements. Coef\ufb01cients of determination R2> 0.84 and deviations lower than 6% from manual measurements where in general detected in the case of head size, hips distance, withers to tail length, chest girth, hips, and withers height. Conversely, lower performances where recognized in the case of animal depth (R2 = 0.74) and back slope (R2 = 0.12)

    Simultaneous Parameter Calibration, Localization, and Mapping

    Get PDF
    The calibration parameters of a mobile robot play a substantial role in navigation tasks. Often these parameters are subject to variations that depend either on changes in the environment or on the load of the robot. In this paper, we propose an approach to simultaneously estimate a map of the environment, the position of the on-board sensors of the robot, and its kinematic parameters. Our method requires no prior knowledge about the environment and relies only on a rough initial guess of the parameters of the platform. The proposed approach estimates the parameters online and it is able to adapt to non-stationary changes of the configuration. We tested our approach in simulated environments and on a wide range of real-world data using different types of robotic platforms. (C) 2012 Taylor & Francis and The Robotics Society of Japa

    Toward 3D reconstruction of outdoor scenes using an MMW radar and a monocular vision sensor

    Get PDF
    International audienceIn this paper, we introduce a geometric method for 3D reconstruction of the exterior environment using a panoramic microwave radar and a camera. We rely on the complementarity of these two sensors considering the robustness to the environmental conditions and depth detection ability of the radar, on the one hand, and the high spatial resolution of a vision sensor, on the other. Firstly, geometric modeling of each sensor and of the entire system is presented. Secondly, we address the global calibration problem, which consists of finding the exact transformation between the sensors' coordinate systems. Two implementation methods are proposed and compared, based on the optimization of a non-linear criterion obtained from a set of radar-to-image target correspondences. Unlike existing methods, no special configuration of the 3D points is required for calibration. This makes the methods flexible and easy to use by a non-expert operator. Finally, we present a very simple, yet robust 3D reconstruction method based on the sensors' geometry. This method enables one to reconstruct observed features in 3D using one acquisition (static sensor), which is not always met in the state of the art for outdoor scene reconstruction.The proposed methods have been validated with synthetic and real data
    • …
    corecore