73,665 research outputs found

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Ultrasonic Polishing

    Get PDF
    The ultrasonic polishing process makes use of the high-frequency (ultrasonic) vibrations of an abradable tool which automatically conforms to the work piece and an abrasive slurry to finish surfaces and edges on complex, highly detailed, close tolerance cavities in materials from beryllium copper to carbide. Applications range from critical deburring of guidance system components to removing EDM recast layers from aircraft engine components to polishing molds for forming carbide cutting tool inserts or injection molding plastics. A variety of materials including tool steels, carbides, and even ceramics can be successfully processed. Since the abradable tool automatically conforms to the work piece geometry, the ultrasonic finishing method described offers a number of important benefits in finishing components with complex geometries

    A Study of Speed of the Boundary Element Method as applied to the Realtime Computational Simulation of Biological Organs

    Full text link
    In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.Comment: preprint, draft, 2 tables, 47 references, 7 files, Codes that can solve three dimensional linear elastostatic problems using constant boundary elements (of triangular shape) while ignoring body forces are provided as supplementary files; codes are distributed under the MIT License in three versions: i) MATLAB version ii) Fortran 90 version (sequential code) iii) Fortran 90 version (parallel code

    Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut

    Full text link
    The multiway-cut problem is, given a weighted graph and k >= 2 terminal nodes, to find a minimum-weight set of edges whose removal separates all the terminals. The problem is NP-hard, and even NP-hard to approximate within 1+delta for some small delta > 0. Calinescu, Karloff, and Rabani (1998) gave an algorithm with performance guarantee 3/2-1/k, based on a geometric relaxation of the problem. In this paper, we give improved randomized rounding schemes for their relaxation, yielding a 12/11-approximation algorithm for k=3 and a 1.3438-approximation algorithm in general. Our approach hinges on the observation that the problem of designing a randomized rounding scheme for a geometric relaxation is itself a linear programming problem. The paper explores computational solutions to this problem, and gives a proof that for a general class of geometric relaxations, there are always randomized rounding schemes that match the integrality gap.Comment: Conference version in ACM Symposium on Theory of Computing (1999). To appear in Mathematics of Operations Researc

    Macroscopic simulation of the liner honing process

    Get PDF
    The form quality, the roughness and the surface appearance produced by honing minimizes the friction of the piston in the liner. The process is however mechanically complex and the selection of the process parameters is currently based on empirical methods. The aim of this paper is thus to develop a macroscopic simulation environment of complete real honing cycles, which will help end-users during the setting-up. This virtual tool is based on a space-time discretization and a macroscopic cutting model taking into account local contacts between the workpiece and the abrasive tool. The space-time discretization allows representing the machine environment with the tool, the workpiece and the kinematics. Simulation results are finally validated by comparison with industrial experiments.Thèse CIFRe Renault SAS / MSMP PôleProcess ECO
    corecore