28 research outputs found

    Certifying solution geometry in random CSPs: counts, clusters and balance

    Get PDF
    An active topic in the study of random constraint satisfaction problems (CSPs) is the geometry of the space of satisfying or almost satisfying assignments as the function of the density, for which a precise landscape of predictions has been made via statistical physics-based heuristics. In parallel, there has been a recent flurry of work on refuting random constraint satisfaction problems, via nailing refutation thresholds for spectral and semidefinite programming-based algorithms, and also on counting solutions to CSPs. Inspired by this, the starting point for our work is the following question: what does the solution space for a random CSP look like to an efficient algorithm? In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at the densities where they are unsatisfiable but no refutation algorithm is known. 1. Counts. For every Boolean CSP we give algorithms that with high probability certify a subexponential upper bound on the number of solutions. We also give algorithms to certify a bound on the number of large cuts in a Gaussian-weighted graph, and the number of large independent sets in a random dd-regular graph. 2. Clusters. For Boolean 33CSPs we give algorithms that with high probability certify an upper bound on the number of clusters of solutions. 3. Balance. We also give algorithms that with high probability certify that there are no "unbalanced" solutions, i.e., solutions where the fraction of +1+1s deviates significantly from 50%50\%. Finally, we also provide hardness evidence suggesting that our algorithms for counting are optimal

    CSP-Completeness And Its Applications

    Get PDF
    We build off of previous ideas used to study both reductions between CSPrefutation problems and improper learning and between CSP-refutation problems themselves to expand some hardness results that depend on the assumption that refuting random CSP instances are hard for certain choices of predicates (like k-SAT). First, we are able argue the hardness of the fundamental problem of learning conjunctions in a one-sided PAC-esque learning model that has appeared in several forms over the years. In this model we focus on producing a hypothesis that foremost guarantees a small false-positive rate while minimizing the false-negative rate for such hypotheses. Further, we formalize a notion of CSP-refutation reductions and CSP-refutation completeness that and use these, along with candidate CSP-refutatation complete predicates, to provide further evidence for the hardness of several problems

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    On the Complexity of Random Satisfiability Problems with Planted Solutions

    Get PDF
    The problem of identifying a planted assignment given a random kk-SAT formula consistent with the assignment exhibits a large algorithmic gap: while the planted solution becomes unique and can be identified given a formula with O(nlogn)O(n\log n) clauses, there are distributions over clauses for which the best known efficient algorithms require nk/2n^{k/2} clauses. We propose and study a unified model for planted kk-SAT, which captures well-known special cases. An instance is described by a planted assignment σ\sigma and a distribution on clauses with kk literals. We define its distribution complexity as the largest rr for which the distribution is not rr-wise independent (1rk1 \le r \le k for any distribution with a planted assignment). Our main result is an unconditional lower bound, tight up to logarithmic factors, for statistical (query) algorithms [Kearns 1998, Feldman et. al 2012], matching known upper bounds, which, as we show, can be implemented using a statistical algorithm. Since known approaches for problems over distributions have statistical analogues (spectral, MCMC, gradient-based, convex optimization etc.), this lower bound provides a rigorous explanation of the observed algorithmic gap. The proof introduces a new general technique for the analysis of statistical query algorithms. It also points to a geometric paring phenomenon in the space of all planted assignments. We describe consequences of our lower bounds to Feige's refutation hypothesis [Feige 2002] and to lower bounds on general convex programs that solve planted kk-SAT. Our bounds also extend to other planted kk-CSP models, and, in particular, provide concrete evidence for the security of Goldreich's one-way function and the associated pseudorandom generator when used with a sufficiently hard predicate [Goldreich 2000].Comment: Extended abstract appeared in STOC 201

    Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's

    Get PDF
    We present an algorithm for recovering planted solutions in two well-known models, the stochastic block model and planted constraint satisfaction problems, via a common generalization in terms of random bipartite graphs. Our algorithm matches up to a constant factor the best-known bounds for the number of edges (or constraints) needed for perfect recovery and its running time is linear in the number of edges used. The time complexity is significantly better than both spectral and SDP-based approaches. The main contribution of the algorithm is in the case of unequal sizes in the bipartition (corresponding to odd uniformity in the CSP). Here our algorithm succeeds at a significantly lower density than the spectral approaches, surpassing a barrier based on the spectral norm of a random matrix. Other significant features of the algorithm and analysis include (i) the critical use of power iteration with subsampling, which might be of independent interest; its analysis requires keeping track of multiple norms of an evolving solution (ii) it can be implemented statistically, i.e., with very limited access to the input distribution (iii) the algorithm is extremely simple to implement and runs in linear time, and thus is practical even for very large instances
    corecore