188 research outputs found

    Drexel University

    Get PDF
    We present a 3D matching framework based on a many-to-many matching algorithm that works with skeletal representations of 3D volumetric objects. We demonstrate the performance of this approach on a large database of 3D objects containing more than 1000 exemplars. The method is especially suited to matching objects with distinct part structure and is invariant to part articulation. Skeletal matching has an intuitive quality that helps in defining the search and visualizing the results. In particular, the matching algorithm produces a direct correspondence between two skeletons and their parts, which can be used for registration and juxtaposition. 1

    Similarity score of two images using different measures.

    Get PDF
    In the field of computer vision and image processing, image similarity has been a central concern for decades. If you compare two pictures, Image Similarity returns a value that tells you how physically they are close. A quantitative measure of the degree of correspondence between the images concerned is given by this test. The score of the similarity between images varies from 0 to 1. In this paper, ORB (Oriented Fast Rotated Brief) algorithm is used to measure the similarity and other types of similarity measures like Structural Similarity Index (SSIM), pixel similarity, Earth mover's Distance are used to obtain the score. When two images are compared, it shows how much identical (common) objects are there in the two images. So, the accuracy or similarity score is about 87 percent when the two images are compared

    Piecewise Affine Registration of Biological Images for Volume Reconstruction

    Get PDF
    This manuscript tackles the reconstruction of 3D volumes via mono-modal registration of series of 2D biological images (histological sections, autoradiographs, cryosections, etc.). The process of acquiring these images typically induces composite transformations that we model as a number of rigid or affine local transformations embedded in an elastic one. We propose a registration approach closely derived from this model. Given a pair of input images, we first compute a dense similarity field between them with a block matching algorithm. We use as a similarity measure an extension of the classical correlation coefficient that improves the consistency of the field. A hierarchical clustering algorithm then automatically partitions the field into a number of classes from which we extract independent pairs of sub-images. Our clustering algorithm relies on the Earth mover’s distribution metric and is additionally guided by robust least-square estimation of the transformations associated with each cluster. Finally, the pairs of sub-images are, independently, affinely registered and a hybrid affine/non-linear interpolation scheme is used to compose the output registered image. We investigate the behavior of our approach on several batches of histological data and discuss its sensitivity to parameters and noise

    Algorithms for multi-modal human movement and behaviour monitoring

    Get PDF
    This thesis describes investigations into improvements in the field of automated people tracking using multi-modal infrared (IR) and visible image information. The research question posed is; “To what extent can infrared image information be used to improve visible light based human tracking systems?” Automated passive tracking of human subjects is an active research area which has been approached in many ways. Typical approaches include the segmentation of the foreground, the location of humans, model initialisation and subject tracking. Sensor reliability evaluation and fusion methods are also key research areas in multi-modal systems. Shifting illumination and shadows can cause issues with visible images when attempting to extract foreground regions. Images from thermal IR cameras, which use long-wavelength infrared (LWIR) sensors, demonstrate high invariance to illumination. It is shown that thermal IR images often provide superior foreground masks using pixel level statistical extraction techniques in many scenarios. Experiments are performed to determine if cues are present at the data level that may indicate the quality of the sensor as an input. Modality specific measures are proposed as possible indicators of sensor quality (determined by foreground extraction capability). A sensor and application specific method for scene evaluation is proposed, whereby sensor quality is measured at the pixel level. A neuro-fuzzy inference system is trained using the scene quality measures to assess a series of scenes and make a modality decision

    New procedures for visualizing data and diagnosing regression models

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 97-103).This thesis presents new methods for exploring data using visualization techniques. The first part of the thesis develops a procedure for visualizing the sampling variability of a plot. The motivation behind this development is that reporting a single plot of a sample of data without a description of its sampling variability can be uninformative and misleading in the same way that reporting a sample mean without a confidence interval can be. Next, the thesis develops a method for simplifying large scatter plot matrices, using similar techniques as the above procedure. The second part of the thesis introduces a new diagnostic method for regression called backward selection search. Backward selection search identifies a relevant feature set and a set of influential observations with good accuracy, given the difficulty of the problem, and additionally provides a description, in the form of a set of plots, of how the regression inferences would be affected with other model choices, which are close to optimal. This description is useful, because an observation, that one analyst identifies as an outlier, could be identified as the most important observation in the data set by another analyst. The key idea behind backward selection search has implications for methodology improvements beyond the realm of visualization. This is described following the presentation of backward selection search. Real and simulated examples, provided throughout the thesis, demonstrate that the methods developed in the first part of the thesis will improve the effectiveness and validity of data visualization, while the methods developed in the second half of the thesis will improve analysts' abilities to select robust models.by Rajiv Menjoge.Ph.D

    Analysis of combined approaches of CBIR systems by clustering at varying precision levels

    Get PDF
    The image retrieving system is used to retrieve images from the image database. Two types of Image retrieval techniques are commonly used: content-based and text-based techniques. One of the well-known image retrieval techniques that extract the images in an unsupervised way, known as the cluster-based image retrieval technique. In this cluster-based image retrieval, all visual features of an image are combined to find a better retrieval rate and precisions. The objectives of the study were to develop a new model by combining the three traits i.e., color, shape, and texture of an image. The color-shape and color-texture models were compared to a threshold value with various precision levels. A union was formed of a newly developed model with a color-shape, and color-texture model to find the retrieval rate in terms of precisions of the image retrieval system. The results were experimented on on the COREL standard database and it was found that the union of three models gives better results than the image retrieval from the individual models. The newly developed model and the union of the given models also gives better results than the existing system named cluster-based retrieval of images by unsupervised learning (CLUE)
    • …
    corecore