4,838 research outputs found

    Fast Mode Decision for 3D-HEVC Depth Intracoding

    Get PDF
    The emerging international standard of high efficiency video coding based 3D video coding (3D-HEVC) is a successor to multiview video coding (MVC). In 3D-HEVC depth intracoding, depth modeling mode (DMM) and high efficiency video coding (HEVC) intraprediction mode are both employed to select the best coding mode for each coding unit (CU). This technique achieves the highest possible coding efficiency, but it results in extremely large encoding time which obstructs the 3D-HEVC from practical application. In this paper, a fast mode decision algorithm based on the correlation between texture video and depth map is proposed to reduce 3D-HEVC depth intracoding computational complexity. Since the texture video and its associated depth map represent the same scene, there is a high correlation among the prediction mode from texture video and depth map. Therefore, we can skip some specific depth intraprediction modes rarely used in related texture CU. Experimental results show that the proposed algorithm can significantly reduce computational complexity of 3D-HEVC depth intracoding while maintaining coding efficiency

    Efficient HEVC-based video adaptation using transcoding

    Get PDF
    In a video transmission system, it is important to take into account the great diversity of the network/end-user constraints. On the one hand, video content is typically streamed over a network that is characterized by different bandwidth capacities. In many cases, the bandwidth is insufficient to transfer the video at its original quality. On the other hand, a single video is often played by multiple devices like PCs, laptops, and cell phones. Obviously, a single video would not satisfy their different constraints. These diversities of the network and devices capacity lead to the need for video adaptation techniques, e.g., a reduction of the bit rate or spatial resolution. Video transcoding, which modifies a property of the video without the change of the coding format, has been well-known as an efficient adaptation solution. However, this approach comes along with a high computational complexity, resulting in huge energy consumption in the network and possibly network latency. This presentation provides several optimization strategies for the transcoding process of HEVC (the latest High Efficiency Video Coding standard) video streams. First, the computational complexity of a bit rate transcoder (transrater) is reduced. We proposed several techniques to speed-up the encoder of a transrater, notably a machine-learning-based approach and a novel coding-mode evaluation strategy have been proposed. Moreover, the motion estimation process of the encoder has been optimized with the use of decision theory and the proposed fast search patterns. Second, the issues and challenges of a spatial transcoder have been solved by using machine-learning algorithms. Thanks to their great performance, the proposed techniques are expected to significantly help HEVC gain popularity in a wide range of modern multimedia applications

    Algorithms and methods for video transcoding.

    Get PDF
    Video transcoding is the process of dynamic video adaptation. Dynamic video adaptation can be defined as the process of converting video from one format to another, changing the bit rate, frame rate or resolution of the encoded video, which is mainly necessitated by the end user requirements. H.264 has been the predominantly used video compression standard for the last 15 years. HEVC (High Efficiency Video Coding) is the latest video compression standard finalised in 2013, which is an improvement over H.264 video compression standard. HEVC performs significantly better than H.264 in terms of the Rate-Distortion performance. As H.264 has been widely used in the last decade, a large amount of video content exists in H.264 format. There is a need to convert H.264 video content to HEVC format to achieve better Rate-Distortion performance and to support legacy video formats on newer devices. However, the computational complexity of HEVC encoder is 2-10 times higher than that of H.264 encoder. This makes it necessary to develop low complexity video transcoding algorithms to transcode from H.264 to HEVC format. This research work proposes low complexity algorithms for H.264 to HEVC video transcoding. The proposed algorithms reduce the computational complexity of H.264 to HEVC video transcoding significantly, with negligible loss in Rate-Distortion performance. This work proposes three different video transcoding algorithms. The MV-based mode merge algorithm uses the block mode and MV variances to estimate the split/non-split decision as part of the HEVC block prediction process. The conditional probability-based mode mapping algorithm models HEVC blocks of sizes 16×16 and lower as a function of H.264 block modes, H.264 and HEVC Quantisation Parameters (QP). The motion-compensated MB residual-based mode mapping algorithm makes the split/non-split decision based on content-adaptive classification models. With a combination of the proposed set of algorithms, the computational complexity of the HEVC encoder is reduced by around 60%, with negligible loss in Rate-Distortion performance, outperforming existing state-of-art algorithms by 20-25% in terms of computational complexity. The proposed algorithms can be used in computation-constrained video transcoding applications, to support video format conversion in smart devices, migration of large-scale H.264 video content from host servers to HEVC, cloud computing-based transcoding applications, and also to support high quality videos over bandwidth-constrained networks

    CTU Depth Decision Algorithms for HEVC: A Survey

    Get PDF
    High-Efficiency Video Coding (HEVC) surpasses its predecessors in encoding efficiency by introducing new coding tools at the cost of an increased encoding time-complexity. The Coding Tree Unit (CTU) is the main building block used in HEVC. In the HEVC standard, frames are divided into CTUs with the predetermined size of up to 64x64 pixels. Each CTU is then divided recursively into a number of equally sized square areas, known as Coding Units (CUs). Although this diversity of frame partitioning increases encoding efficiency, it also causes an increase in the time complexity due to the increased number of ways to find the optimal partitioning. To address this complexity, numerous algorithms have been proposed to eliminate unnecessary searches during partitioning CTUs by exploiting the correlation in the video. In this paper, existing CTU depth decision algorithms for HEVC are surveyed. These algorithms are categorized into two groups, namely statistics and machine learning approaches. Statistics approaches are further subdivided into neighboring and inherent approaches. Neighboring approaches exploit the similarity between adjacent CTUs to limit the depth range of the current CTU, while inherent approaches use only the available information within the current CTU. Machine learning approaches try to extract and exploit similarities implicitly. Traditional methods like support vector machines or random forests use manually selected features, while recently proposed deep learning methods extract features during training. Finally, this paper discusses extending these methods to more recent video coding formats such as Versatile Video Coding (VVC) and AOMedia Video 1(AV1)

    The JPEG2000 still image compression standard

    Get PDF
    The development of standards (emerging and established) by the International Organization for Standardization (ISO), the International Telecommunications Union (ITU), and the International Electrotechnical Commission (IEC) for audio, image, and video, for both transmission and storage, has led to worldwide activity in developing hardware and software systems and products applicable to a number of diverse disciplines [7], [22], [23], [55], [56], [73]. Although the standards implicitly address the basic encoding operations, there is freedom and flexibility in the actual design and development of devices. This is because only the syntax and semantics of the bit stream for decoding are specified by standards, their main objective being the compatibility and interoperability among the systems (hardware/software) manufactured by different companies. There is, thus, much room for innovation and ingenuity. Since the mid 1980s, members from both the ITU and the ISO have been working together to establish a joint international standard for the compression of grayscale and color still images. This effort has been known as JPEG, the Join

    Energy efficient enabling technologies for semantic video processing on mobile devices

    Get PDF
    Semantic object-based processing will play an increasingly important role in future multimedia systems due to the ubiquity of digital multimedia capture/playback technologies and increasing storage capacity. Although the object based paradigm has many undeniable benefits, numerous technical challenges remain before the applications becomes pervasive, particularly on computational constrained mobile devices. A fundamental issue is the ill-posed problem of semantic object segmentation. Furthermore, on battery powered mobile computing devices, the additional algorithmic complexity of semantic object based processing compared to conventional video processing is highly undesirable both from a real-time operation and battery life perspective. This thesis attempts to tackle these issues by firstly constraining the solution space and focusing on the human face as a primary semantic concept of use to users of mobile devices. A novel face detection algorithm is proposed, which from the outset was designed to be amenable to be offloaded from the host microprocessor to dedicated hardware, thereby providing real-time performance and reducing power consumption. The algorithm uses an Artificial Neural Network (ANN), whose topology and weights are evolved via a genetic algorithm (GA). The computational burden of the ANN evaluation is offloaded to a dedicated hardware accelerator, which is capable of processing any evolved network topology. Efficient arithmetic circuitry, which leverages modified Booth recoding, column compressors and carry save adders, is adopted throughout the design. To tackle the increased computational costs associated with object tracking or object based shape encoding, a novel energy efficient binary motion estimation architecture is proposed. Energy is reduced in the proposed motion estimation architecture by minimising the redundant operations inherent in the binary data. Both architectures are shown to compare favourable with the relevant prior art

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF
    corecore