4,772 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems

    Get PDF
    The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramati-cally reshaped the requirements for control and communication systems within the factory systems of the future. The aforementioned technological revolution strongly affects industrial smart and distributed measurement systems as well, pointing to ever more integrated and intelligent equipment devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, communication networks and protocols play a key role, directly impacting on the measurement accuracy, causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical integration, and interoperability between Information Technology (IT) and Operational Technology (OT), fostered the development of enhanced communication subsystems. Indeed, established tech-nologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking (TSN), aiming at reshaping the Ethernet standard to support for time-, mission-and safety-critical traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is provided, while contextualizing TSN within the complex existing industrial technological panorama, particularly focusing on industrial distributed measurement systems. In particular, this paper has to be considered a technical review of the most important features of TSN, while underlining its applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology is addressed in the last part of the survey, since wireless communication represents an appealing opportunity in the industrial measurement context. In this respect, a test case is presented, to point out the need for wirelessly connected sensors networks. In particular, by reviewing some literature contributions it has been possible to show how wireless technologies offer the flexibility necessary to support advanced mobile IIoT applications

    Operator interfaces for the lifecycle support of component based automation systems

    Get PDF
    Current manufacturing automation systems (specifically the powertrain sector) have been facing challenges with constant pressures of globalisation, environmental concerns and ICT (Information and Communication Technology) innovations. These challenges instigate new demands for shorter product lifecycles and require customised products to be manufactured as efficiently as possible. Manufacturing systems must therefore be agile to remain competitive by supporting frequent reconfigurations involving distributed engineering activities. [Continues.

    System design and risk assessment for safety critical control software product lines

    Get PDF
    A methodology is presented for the design of safety critical product lines for control automation software. The functional failure identification and propagation risk assessment method is used in the early design phase of the mechatronic system. The applied methodology starts with the decomposition of the system into functions that are connected by energy, material and signal flows. This results in a functional model that does not make any assumptions on what components are used to realize the functions. The functions are mapped to mechatronic components in a model that can be simulated: the configuration flow graph. Functional failure logic is executed in parallel to the simulation to monitor the simulation signals and to determine the health of each function. The functional health results of the simulation, when critical events are injected, are used to identify the propagation of functional failures. Alternative designs that are described with a feature model, combinations of component parameter values and changes in the critical event scenario can be simulated. System designs that result in undesirable behavior are rejected. The purpose is to identify risks and to determine mechatronic designs with adequate safety characteristics before the design process branches into software, electrical and mechanical domains. The final deliverable of the mechatronic system design phase is a feature model capturing the design alternatives with acceptable safety characteristics. The aspect of this model containing software is the starting point for software product line engineering. In control automation, programmable logic controller targets are used, so a methodology and toolchain for supporting software product line configuration for such platforms has been developed using the PLCopen standard. Two case studies are used to demonstrate the methodology: a boiling water reactor, with a focus on reactor coolant pumps, and a mobile elevating work platform
    • …
    corecore