564 research outputs found

    Can the ischemic penumbra be identified on noncontrast CT of acute stroke?

    Get PDF
    <p><b>Background and Purpose:</b> Early ischemic changes on noncontrast CT in acute stroke include both hypoattenuation and brain swelling, which may have different pathophysiological significance.</p> <p><b>Methods:</b> Noncontrast CT and CT perfusion brain scans from patients with suspected acute stroke <6 hours after onset were reviewed. Five raters independently scored noncontrast CTs blind to clinical data using the Alberta Stroke Program Early CT Score (ASPECTS). Each ASPECTS region was scored as hypodense or swollen. A separate reviewer measured time to peak and cerebral blood volume in each ASPECTS region on CT perfusion. Time to peak and cerebral blood volume were compared for each region categorized as normal, hypodense, or isodense and swollen.</p> <p><b>Results:</b> Scans of 32 subjects a median 155 minutes after onset yielded 228 regions with both CT perfusion and noncontrast CT data. Isodense swelling was associated with significantly higher cerebral blood volume (P=0.016) and with penumbral perfusion (posttest:pretest likelihood ratio 1.44 [95% CI: 0.68 to 2.90]), whereas hypodensity was associated with more severe time to peak delay and with core perfusion (likelihood ratio 3.47 [95% CI: 1.87 to 6.34]). Neither isodense swelling nor hypodensity was sensitive for prediction of perfusion pattern, but appearances were highly specific (87.2% and 91.0% for penumbra and core, respectively). Intrarater agreement was good or excellent, but interrater agreement for both hypodensity and swelling was poor.</p> <p><b>Conclusions:</b> Regions exhibiting hypoattenuation are likely to represent the infarct core, whereas regions that are isodense and swollen have increased cerebral blood volume and are more likely to signify penumbral perfusion. Although noncontrast CT is not sensitive for detection of core and penumbra, appearances are specific. Some information on tissue viability can therefore be obtained from noncontrast CT.</p&gt

    Early Imaging Prediction of Malignant Cerebellar Edema Development in Acute Ischemic Stroke

    Get PDF
    Background and Purpose-Malignant cerebellar edema (MCE) is a life-threatening complication of acute ischemic stroke that requires timely diagnosis and management. Aim of this study was to identify imaging predictors in initial multiparametric computed tomography (CT), including whole-brain CT perfusion (WB-CTP). Methods-We consecutively selected all subjects with cerebellar ischemic WB-CTP deficits and follow-up-confirmed cerebellar infarction from an initial cohort of 2635 patients who had undergone multiparametric CT because of suspected stroke. Follow-up imaging was assessed for the presence of MCE, measured using an established 10-point scale, of which scores >= 4 are considered malignant. Posterior circulation-Acute Stroke Prognosis Early CT Score (pc-ASPECTS) was determined to assess ischemic changes on noncontrast CT, CT angiography (CTA), and parametric WB-CTP maps (cerebellar blood flow [CBF];cerebellar blood volume;mean transit time;time to drain). Fisher's exact tests, Mann-Whitney U tests, and receiver operating characteristics analyses were performed for statistical analyses. Results-Out of a total of 51 patients who matched the inclusion criteria, 42 patients (82.4%) were categorized as MCE-and 9 (17.6%) as MCE+. MCE+ patients had larger CBF, cerebellar blood volume, mean transit time, and time to drain deficit volumes (all with P0.05). Receiver operating characteristics analyses yielded the largest area under the curve values for the prediction of MCE development for CBF (0.979) and cerebellar blood volume deficit volumes (0.956) and pc-ASPECTS on CBF (0.935), whereas pc-ASPECTS on noncontrast CT (0.648) and CTA (0.684) had less diagnostic value. The optimal cutoff value for CBF deficit volume was 22 mL, yielding 100% sensitivity and 90% specificity for MCE classification. Conclusions-WB-CTP provides added diagnostic value for the early identification of patients at risk for MCE development in acute cerebellar stroke

    Imaging in Acute Stroke

    Get PDF
    Imaging in the acute setting of suspected stroke is an important topic to all emergency physicians, neurologists, neurosurgeons and neuroradiologist. When it comes to imaging, the American College of Radiology (ACR) continually updates its guidelines for imaging pathways through the ACR Appropriateness Criteria.1,2 This article is a general review of the imaging modalities currently used to assess and help guide the treatment of strokes

    Neuroimaging of Acute Intracerebral Hemorrhage

    Get PDF
    Intracerebral hemorrhage (ICH) accounts for 10% to 20% of all strokes worldwide and is associated with high morbidity and mortality. Neuroimaging is clinically important for the rapid diagnosis of ICH and underlying etiologies, but also for identification of ICH expansion, often as-sociated with an increased risk for poor outcome. In this context, rapid assessment of early hema-toma expansion risk is both an opportunity for therapeutic intervention and a potential hazard for hematoma evacuation surgery. In this review, we provide an overview of the current literature surrounding the use of multimodal neuroimaging of ICH for etiological diagnosis, prediction of early hematoma expansion, and prognostication of neurological outcome. Specifically, we discuss standard imaging using computed tomography, the value of different vascular imaging modalities to identify underlying causes and present recent advances in magnetic resonance imaging and computed tomography perfusion

    Performance of Automated Attenuation Measurements at Identifying Large Vessel Occlusion Stroke on CT Angiography

    Get PDF
    PURPOSE Computed tomography angiography (CTA) is routinely used to detect large-vessel occlusion (LVO) in patients with suspected acute ischemic stroke; however, visual analysis is time consuming and prone to error. To evaluate solutions to support imaging triage, we tested performance of automated analysis of CTA source images (CTASI) at identifying patients with LVO. METHODS Stroke patients with LVO were selected from a prospectively acquired cohort. A control group was selected from consecutive patients with clinically suspected stroke without signs of ischemia on CT perfusion (CTP) or infarct on follow-up. Software-based automated segmentation and Hounsfield unit (HU) measurements were performed on CTASI for all regions of the Alberta Stroke Program Early CT score (ASPECTS). We derived different parameters from raw measurements and analyzed their performance to identify patients with LVO using receiver operating characteristic curve analysis. RESULTS The retrospective analysis included 145 patients, 79 patients with LVO stroke and 66 patients without stroke. The parameters hemispheric asymmetry ratio (AR), ratio between highest and lowest regional AR and M2-territory AR produced area under the curve (AUC) values from 0.95-0.97 (all p < 0.001) for detecting presence of LVO in the total population. Resulting sensitivity (sens)/specificity (spec) defined by the Youden index were 0.87/0.97-0.99. Maximum sens/spec defined by the specificity threshold ≥0.70 were 0.91-0.96/0.77-0.83. Performance in a~small number of patients with isolated M2 occlusion was lower (AUC: 0.72-0.85). CONCLUSION Automated attenuation measurements on CTASI identify proximal LVO stroke patients with high sensitivity and specificity. This technique can aid in accurate and timely patient selection for thrombectomy, especially in primary stroke centers without CTP capacity

    Characteristics of misclassified ct perfusion ischemic core in patients with acute ischemic stroke

    Get PDF
    Background CT perfusion (CTP) is used to estimate the extent of ischemic core and penumbra in patients with acute ischemic stroke. CTP reliability, however, is limited. This study aims to identify regions misclassified as ischemic core on CTP, using infarct on follow-up noncontrast CT. We aim to assess differences in volumetric and perfusion characteristics in these regions compared to areas that ended up as infarct on follo

    Proposed Protocols for Artificial Intelligence Imaging Database in Acute Stroke Imaging

    Get PDF
    Purpose To propose standardized and feasible imaging protocols for constructing artificial intelligence (AI) database in acute stroke by assessing the current practice at tertiary hospitals in South Korea and reviewing evolving AI models. Materials and Methods A nationwide survey on acute stroke imaging protocols was conducted using an electronic questionnaire sent to 43 registered tertiary hospitals between April and May 2021. Imaging protocols for endovascular thrombectomy (EVT) in the early and late time windows and during follow-up were assessed. Clinical applications of AI techniques in stroke imaging and required sequences for developing AI models were reviewed. Standardized and feasible imaging protocols for data curation in acute stroke were proposed. Results There was considerable heterogeneity in the imaging protocols for EVT candidates in the early and late time windows and posterior circulation stroke. Computed tomography (CT)-based protocols were adopted by 70% (30/43), and acquisition of noncontrast CT, CT angiography and CT perfusion in a single session was most commonly performed (47%, 14/30) with the preference of multiphase (70%, 21/30) over single phase CT angiography. More hospitals performed magnetic resonance imaging (MRI)-based protocols or additional MRI sequences in a late time window and posterior circulation stroke. Diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) were most commonly performed MRI sequences with considerable variation in performing other MRI sequences. AI models for diagnostic purposes required noncontrast CT, CT angiography and DWI while FLAIR, dynamic susceptibility contrast perfusion, and T1-weighted imaging (T1WI) were additionally required for prognostic AI models. Conclusion Given considerable heterogeneity in acute stroke imaging protocols at tertiary hospitals in South Korea, standardized and feasible imaging protocols are required for constructing AI database in acute stroke. The essential sequences may be noncontrast CT, DWI, CT/MR angiography and CT/MR perfusion while FLAIR and T1WI may be additionally required

    Acute Stroke Multimodal Imaging: Present and Potential Applications toward Advancing Care.

    Get PDF
    In the past few decades, the field of acute ischemic stroke (AIS) has experienced significant advances in clinical practice. A core driver of this success has been the utilization of acute stroke imaging with an increasing focus on advanced methods including multimodal imaging. Such imaging techniques not only provide a richer understanding of AIS in vivo, but also, in doing so, provide better informed clinical assessments in management and treatment toward achieving best outcomes. As a result, advanced stroke imaging methods are now a mainstay of routine AIS practice that reflect best practice delivery of care. Furthermore, these imaging methods hold great potential to continue to advance the understanding of AIS and its care in the future. Copyright © 2017 by Thieme Medical Publishers, Inc

    Identification of imaging selection patterns in acute ischemic stroke patients and the influence on treatment and clinical trial enrolment decision making

    Get PDF
    For the STroke Imaging Research (STIR) and VISTA-Imaging Investigators The purpose of this study was to collect precise information on the typical imaging decisions given specific clinical acute stroke scenarios. Stroke centers worldwide were surveyed regarding typical imaging used to work up representative acute stroke patients, make treatment decisions, and willingness to enroll in clinical trials. STroke Imaging Research and Virtual International Stroke Trials Archive-Imaging circulated an online survey of clinical case vignettes through its website, the websites of national professional societies from multiple countries as well as through email distribution lists from STroke Imaging Research and participating societies. Survey responders were asked to select the typical imaging work-up for each clinical vignette presented. Actual images were not presented to the survey responders. Instead, the survey then displayed several types of imaging findings offered by the imaging strategy, and the responders selected the appropriate therapy and whether to enroll into a clinical trial considering time from onset, clinical presentation, and imaging findings. A follow-up survey focusing on 6 h from onset was conducted after the release of the positive endovascular trials. We received 548 responses from 35 countries including 282 individual centers; 78% of the centers originating from Australia, Brazil, France, Germany, Spain, United Kingdom, and United States. The specific onset windows presented influenced the type of imaging work-up selected more than the clinical scenario. Magnetic Resonance Imaging usage (27-28%) was substantial, in particular for wake-up stroke. Following the release of the positive trials, selection of perfusion imaging significantly increased for imaging strategy. Usage of vascular or perfusion imaging by Computed Tomography or Magnetic Resonance Imaging beyond just parenchymal imaging was the primary work-up (62-87%) across all clinical vignettes and time windows. Perfusion imaging with Computed Tomography or Magnetic Resonance Imaging was associated with increased probability of enrollment into clinical trials for 0-3 h. Following the release of the positive endovascular trials, selection of endovascular only treatment for 6 h increased across all clinical vignettes

    Neuroimaging in Intracerebral Hemorrhage

    Get PDF
    Hemorrhagic stroke accounts for 15% of all strokes but results in nearly a third of the mortality. Neuroimaging forms the mainstay in diagnosis, which has resulted in improved treatment outcomes. The mandate of neuroimaging includes management, risk assessment, prognostication, and research. This involves rapid identification not only to direct treatment but also to discover the underlying etiology such as vascular malformations or tumors, monitor the evolving course of the hemorrhage and rapidly identify complications. While computed tomography (CT) remains the imaging of choice to rapidly detect acute hemorrhage, growing evidence shows that magnetic resonance imaging (MRI) is comparable to CT for detecting blood in the immediate setting and superior in this regard at subacute and chronic time points. Several advances have been made in the image sequencing protocols to detect bleeds at varying time points and to distinguish possible etiology. Initial and serial imaging is used to identify patients who may benefit from intervention. Advances in this field such as diffusion tensor imaging and functional MRI are being studied for their impact in understanding the extent of injury and possible recovery mechanisms, possibly allowing prognostication for patients
    corecore