2,449 research outputs found

    Distributions of Long-Lived Radioactive Nuclei Provided by Star Forming Environments

    Get PDF
    Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary --- but not sufficient --- for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae within the birth clusters. In addition, molecular clouds often provide multiple episodes of star formation, so that nuclear abundances can accumulate within the cloud; subsequent generations of stars can thus receive elevated levels of radioactive nuclei through this distributed enrichment scenario. This paper calculates the distribution of additional enrichment for 40^{40}K, the most abundant of the long-lived radioactive nuclei. We find that distributed enrichment is more effective than direct enrichment. For the latter mechanism, ideal conditions lead to about 1 in 200 solar systems being directly enriched in 40^{40}K at the level inferred for the early solar nebula (thereby doubling the abundance). For distributed enrichment from adjacent clusters, about 1 in 80 solar systems are enriched at the same level. Distributed enrichment over the entire molecular cloud is more uncertain, but can be even more effective.Comment: 24 pages, 8 figures, accepted for publication in Ap

    The Massive Star-forming Regions Omnibus X-ray Catalog

    Full text link
    We present the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from {\em Chandra}/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc. Additionally, we show the morphology of the unresolved X-ray emission that remains after the catalogued X-ray point sources are excised from the ACIS data, in the context of \Spitzer\ and {\em WISE} observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, we have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics.Comment: Accepted to ApJS, March 3, 2014. 51 pages, 25 figure

    Young stars and reflection nebulae near the lower "edge" of the Galactic molecular disc

    Full text link
    We investigate the star formation occurring in a region well below the Galactic plane towards the optical reflection nebula ESO 368-8 (IRAS 07383-3325). We confirm the presence of a small young stellar cluster (or aggregate of tens of YSOs) identified earlier, embedded in a molecular cloud located near the lower "edge" of the Galactic disc, and characterise the young stellar population. We report the discovery of a near-infrared nebula, and present a CO map revealing a new dense, dynamic cloud core. We used near-infrared JHKs images, millimetre CO spectra and optical V-band images. This star formation region displays an optical reflection nebula (ESO 368-8) and a near-infrared nebula located about 46" (1.1 pc) from each other. The two nebulae are likely to be coeval and to represent two manifestations of the same single star formation episode with about 1 Myr age. The near-IR nebula reveals an embedded, optically and near-IR invisible source whose light scatters off a cavity carved by previous stellar jets or molecular outflows and into our line-of-sight. The molecular cloud is fully covered by our CO(J=1-0) maps and, traced by this line, extends over a region of 7.8 x 7.8 pc^2, exhibiting an angular size 5.4' x 5.4' and shape (close to circular) similar to spherical (or slightly cometary) globules. Towards the direction of the near-IR nebula, the molecular cloud contains a dense core where the molecular gas exhibits large line widths indicative of a very dynamical state, with stirred gas and supersonic motions. Our estimates of the mass of the molecular gas in this region range from 600 to 1600 solar masses. The extinction Av towards the positions of the optical reflection nebula and of the near-IR nebula was found to be Av=3-4 mag and Av=12-15 mag, respectively.Comment: 11 pages, 13 figure
    • …
    corecore