699 research outputs found

    Modelling prognostic trajectories in Alzheimer’s disease

    Get PDF
    Progression to dementia due to Alzheimer’s Disease (AD) is a long and protracted process that involves multiple pathways of disease pathophysiology. Predicting these dynamic changes has major implications for timely and effective clinical management in AD. There are two reasons why at present we lack appropriate tools to make such predictions. First, a key feature of AD is the interactive nature of the relationships between biomarkers, such as accumulation of β-amyloid -a peptide that builds plaques between nerve cells-, tau -a protein found in the axons of nerve cells- and widespread neurodegeneration. Current models fail to capture these relationships because they are unable to successfully reduce the high dimensionality of biomarkers while exploiting informative multivariate relationships. Second, current models focus on simply predicting in a binary manner whether an individual will develop dementia due to AD or not, without informing clinicians about their predicted disease trajectory. This can result in administering inefficient treatment plans and hindering appropriate stratification for clinical trials. In this thesis, we overcome these challenges by using applied machine learning to build predictive models of patient disease trajectories in the earliest stages of AD. Specifically, to exploit the multi-dimensionality of biomarker data, we used a novel feature generation methodology Partial Least Squares regression with recursive feature elimination (PLSr-RFE). This method applies a hybrid-feature selection and feature construction method that captures co-morbidities in cognition and pathophysiology, resulting in an index of Alzheimer’s disease atrophy from structural MRI. We validated our choice of biomarker and the efficacy of our methodology by showing that the learnt pattern of grey matter atrophy is highly predictive of tau accumulation in an independent sample. Next, to go beyond predicting binary outcomes to deriving individualised prognostic scores of cognitive decline due to AD, we used a novel trajectory modelling approach (Generalised Metric Learning Vector Quantization – Scalar projection) that mines multimodal data from large AD research cohorts. Using this approach, we derive individualised prognostic scores of cognitive decline due to AD, revealing interactive cognitive, and biological factors that improve prediction accuracy. Next, we extended our machine learning framework to classify and stage early AD individuals based on future pathological tau accumulation. Our results show that the characteristic spreading pattern of tau in early AD can be predicted by baseline biomarkers, particularly when stratifying groups using multimodal data. Further, we showed that our prognostic index predicts individualised rates of future tau accumulation with high accuracy and regional specificity in an independent sample of cognitively unimpaired individuals. Overall, our work used machine learning to combine continuous information from AD biomarkers predicting pathophysiological changes at different stages in the AD cascade. The approaches presented in this thesis provide an excellent framework to support personalised clinical interventions and guide effective drug discovery trials

    Identification of Novel Fluid Biomarkers for Alzheimer\u27s Disease

    Get PDF
    Clinicopathological studies suggest that Alzheimer\u27s disease: AD) pathology begins to appear ~10-20 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset and progression would, therefore, be invaluable for patient care and efficient clinical trial design. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid: CSF) using an unbiased proteomics approach: two-dimensional difference gel electrophoresis with liquid chromatography tandem mass spectrometry). From this, we identified 47 proteins that differed in abundance between cognitively normal: Clinical Dementia Rating [CDR] 0) and mildly demented: CDR 1) subjects. To validate these findings, we measured a subset of the identified candidate biomarkers by enzyme linked immunosorbent assay: ELISA); promising candidates in this discovery cohort: N=47) were further evaluated by ELISA in a larger validation CSF cohort: N=292) that contained an additional very mildly demented: CDR 0.5) group. Levels of four novel biomarkers were significantly altered in AD, and Receiver-operating characteristic: ROC) analyses using a stepwise logistic regression model identified optimal panels containing these markers that distinguished CDR 0 from CDR\u3e0: tau, YKL-40, NCAM) and CDR 1 from CDR\u3c1: tau, chromogranin-A, carnosinase-I). Plasma levels of the most promising marker, YKL-40, were also found to be increased in CDR 0.5 and 1 groups and to correlate with CSF levels. Importantly, the CSF YKL-40/Aâ42 ratio predicted risk of developing cognitive impairment: CDR 0 to CDR\u3e0 conversion) as well as the best CSF biomarkers identified to date, tau/Aâ42 and p-tau181/Aâ42. Additionally, YKL-40 immunoreactivity was observed within astrocytes near a subset of amyloid plaques, implicating YKL-40 in the neuroinflammatory response to Aâ deposition. Utilizing an alternative, targeted proteomics approach to identify novel biomarkers, 333 CSF samples were evaluated for levels of 190 analytes using a multiplexed Luminex platform. The mean concentrations of 37 analytes were found to differ between CDR 0 and CDR\u3e0 participants. ROC and statistical machine learning algorithms identified novel biomarker panels that improved upon the ability of the current best biomarkers to discriminate very mildly demented from cognitively normal participants, and identified a novel biomarker, Calbindin, with significant prognostic potential

    Development of Gaussian Learning Algorithms for Early Detection of Alzheimer\u27s Disease

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia affecting 10% of the population over the age of 65 and the growing costs in managing AD are estimated to be $259 billion, according to data reported in the 2017 by the Alzheimer\u27s Association. Moreover, with cognitive decline, daily life of the affected persons and their families are severely impacted. Taking advantage of the diagnosis of AD and its prodromal stage of mild cognitive impairment (MCI), an early treatment may help patients preserve the quality of life and slow the progression of the disease, even though the underlying disease cannot be reversed or stopped. This research aims to develop Gaussian learning algorithms, natural language processing (NLP) techniques, and mathematical models to effectively delineate the MCI participants from the cognitively normal (CN) group, and identify the most significant brain regions and patterns of changes associated with the progression of AD. The focus will be placed on the earliest manifestations of the disease (early MCI or EMCI) to plan for effective curative/therapeutic interventions and protocols. Multiple modalities of biomarkers have been found to be significantly sensitive in assessing the progression of AD. In this work, several novel multimodal classification frameworks based on proposed Gaussian Learning algorithms are created and applied to neuroimaging data. Classification based on the combination of structural magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers is seen as the most reliable approach for high-accuracy classification. Additionally, changes in linguistic complexity may provide complementary information for the diagnosis and prognosis of AD. For this research endeavor, an NLP-oriented neuropsychological assessment is developed to automatically analyze the distinguishing characteristics of text data in MCI group versus those in CN group. Early findings suggest significant linguistic differences between CN and MCI subjects in terms of word usage, vocabulary, recall, fragmented sentences. In summary, the results obtained indicate a high potential of the neuroimaging-based classification and NLP-oriented assessment to be utilized as a practically computer aided diagnosis system for classification and prediction of AD and its prodromal stages. Future work will ultimately focus on early signs of AD that could help in the planning of curative and therapeutic intervention to slow the progression of the disease

    Machine Learning Methods for Structural Brain MRIs: Applications for Alzheimer’s Disease and Autism Spectrum Disorder

    Get PDF
    This thesis deals with the development of novel machine learning applications to automatically detect brain disorders based on magnetic resonance imaging (MRI) data, with a particular focus on Alzheimer’s disease and the autism spectrum disorder. Machine learning approaches are used extensively in neuroimaging studies of brain disorders to investigate abnormalities in various brain regions. However, there are many technical challenges in the analysis of neuroimaging data, for example, high dimensionality, the limited amount of data, and high variance in that data due to many confounding factors. These limitations make the development of appropriate computational approaches more challenging. To deal with these existing challenges, we target multiple machine learning approaches, including supervised and semi-supervised learning, domain adaptation, and dimensionality reduction methods.In the current study, we aim to construct effective biomarkers with sufficient sensitivity and specificity that can help physicians better understand the diseases and make improved diagnoses or treatment choices. The main contributions are 1) development of a novel biomarker for predicting Alzheimer’s disease in mild cognitive impairment patients by integrating structural MRI data and neuropsychological test results and 2) the development of a new computational approach for predicting disease severity in autistic patients in agglomerative data by automatically combining structural information obtained from different brain regions.In addition, we investigate various data-driven feature selection and classification methods for whole brain, voxel-based classification analysis of structural MRI and the use of semi-supervised learning approaches to predict Alzheimer’s disease. We also analyze the relationship between disease-related structural changes and cognitive states of patients with Alzheimer’s disease.The positive results of this effort provide insights into how to construct better biomarkers based on multisource data analysis of patient and healthy cohorts that may enable early diagnosis of brain disorders, detection of brain abnormalities and understanding effective processing in patient and healthy groups. Further, the methodologies and basic principles presented in this thesis are not only suited to the studied cases, but also are applicable to other similar problems

    Predictive analytics applied to Alzheimer’s disease : a data visualisation framework for understanding current research and future challenges

    Get PDF
    Dissertation as a partial requirement for obtaining a master’s degree in information management, with a specialisation in Business Intelligence and Knowledge Management.Big Data is, nowadays, regarded as a tool for improving the healthcare sector in many areas, such as in its economic side, by trying to search for operational efficiency gaps, and in personalised treatment, by selecting the best drug for the patient, for instance. Data science can play a key role in identifying diseases in an early stage, or even when there are no signs of it, track its progress, quickly identify the efficacy of treatments and suggest alternative ones. Therefore, the prevention side of healthcare can be enhanced with the usage of state-of-the-art predictive big data analytics and machine learning methods, integrating the available, complex, heterogeneous, yet sparse, data from multiple sources, towards a better disease and pathology patterns identification. It can be applied for the diagnostic challenging neurodegenerative disorders; the identification of the patterns that trigger those disorders can make possible to identify more risk factors, biomarkers, in every human being. With that, we can improve the effectiveness of the medical interventions, helping people to stay healthy and active for a longer period. In this work, a review of the state of science about predictive big data analytics is done, concerning its application to Alzheimer’s Disease early diagnosis. It is done by searching and summarising the scientific articles published in respectable online sources, putting together all the information that is spread out in the world wide web, with the goal of enhancing knowledge management and collaboration practices about the topic. Furthermore, an interactive data visualisation tool to better manage and identify the scientific articles is develop, delivering, in this way, a holistic visual overview of the developments done in the important field of Alzheimer’s Disease diagnosis.Big Data é hoje considerada uma ferramenta para melhorar o sector da saúde em muitas áreas, tais como na sua vertente mais económica, tentando encontrar lacunas de eficiência operacional, e no tratamento personalizado, selecionando o melhor medicamento para o paciente, por exemplo. A ciência de dados pode desempenhar um papel fundamental na identificação de doenças em um estágio inicial, ou mesmo quando não há sinais dela, acompanhar o seu progresso, identificar rapidamente a eficácia dos tratamentos indicados ao paciente e sugerir alternativas. Portanto, o lado preventivo dos cuidados de saúde pode ser bastante melhorado com o uso de métodos avançados de análise preditiva com big data e de machine learning, integrando os dados disponíveis, geralmente complexos, heterogéneos e esparsos provenientes de múltiplas fontes, para uma melhor identificação de padrões patológicos e da doença. Estes métodos podem ser aplicados nas doenças neurodegenerativas que ainda são um grande desafio no seu diagnóstico; a identificação dos padrões que desencadeiam esses distúrbios pode possibilitar a identificação de mais fatores de risco, biomarcadores, em todo e qualquer ser humano. Com isso, podemos melhorar a eficácia das intervenções médicas, ajudando as pessoas a permanecerem saudáveis e ativas por um período mais longo. Neste trabalho, é feita uma revisão do estado da arte sobre a análise preditiva com big data, no que diz respeito à sua aplicação ao diagnóstico precoce da Doença de Alzheimer. Isto foi realizado através da pesquisa exaustiva e resumo de um grande número de artigos científicos publicados em fontes online de referência na área, reunindo a informação que está amplamente espalhada na world wide web, com o objetivo de aprimorar a gestão do conhecimento e as práticas de colaboração sobre o tema. Além disso, uma ferramenta interativa de visualização de dados para melhor gerir e identificar os artigos científicos foi desenvolvida, fornecendo, desta forma, uma visão holística dos avanços científico feitos no importante campo do diagnóstico da Doença de Alzheimer
    corecore