1,883 research outputs found

    The Quality Application of Deep Learning in Clinical Outcome Predictions Using Electronic Health Record Data: A Systematic Review

    Get PDF
    Introduction: Electronic Health Record (EHR) is a significant source of medical data that can be used to develop predictive modelling with therapeutically useful outcomes. Predictive modelling using EHR data has been increasingly utilized in healthcare, achieving outstanding performance and improving healthcare outcomes. Objectives: The main goal of this review study is to examine different deep learning approaches and techniques used to EHR data processing. Methods: To find possibly pertinent articles that have used deep learning on EHR data, the PubMed database was searched. Using EHR data, we assessed and summarized deep learning performance in a number of clinical applications that focus on making specific predictions about clinical outcomes, and we compared the outcomes with those of conventional machine learning models. Results: For this study, a total of 57 papers were chosen. There have been five identified clinical outcome predictions: illness (n=33), intervention (n=6), mortality (n=5), Hospital readmission (n=7), and duration of stay (n=1). The majority of research (39 out of 57) used structured EHR data. RNNs were used as deep learning models the most frequently (LSTM: 17 studies, GRU: 6 research). The analysis shows that deep learning models have excelled when applied to a variety of clinical outcome predictions. While deep learning's application to EHR data has advanced rapidly, it's crucial that these models remain reliable, offering critical insights to assist clinicians in making informed decision. Conclusions: The findings demonstrate that deep learning can outperform classic machine learning techniques since it has the advantage of utilizing extensive and sophisticated datasets, such as longitudinal data seen in EHR. We think that deep learning will keep expanding because it has been quite successful in enhancing healthcare outcomes utilizing EHR data

    Explainable artificial intelligence model to predict acute critical illness from electronic health records

    Get PDF
    We developed an explainable artificial intelligence (AI) early warning score (xAI-EWS) system for early detection of acute critical illness. While maintaining a high predictive performance, our system explains to the clinician on which relevant electronic health records (EHRs) data the prediction is grounded. Acute critical illness is often preceded by deterioration of routinely measured clinical parameters, e.g., blood pressure and heart rate. Early clinical prediction is typically based on manually calculated screening metrics that simply weigh these parameters, such as Early Warning Scores (EWS). The predictive performance of EWSs yields a tradeoff between sensitivity and specificity that can lead to negative outcomes for the patient. Previous work on EHR-trained AI systems offers promising results with high levels of predictive performance in relation to the early, real-time prediction of acute critical illness. However, without insight into the complex decisions by such system, clinical translation is hindered. In this letter, we present our xAI-EWS system, which potentiates clinical translation by accompanying a prediction with information on the EHR data explaining it

    Predicting Unplanned Hospital Readmissions using Patient Level Data

    Get PDF
    The rate of unplanned hospital readmissions in the US is likely to face a steady rise after 2020. Hence, this issue has received considerable critical attention with the policy makers. Majority of hospitals in the US pay millions of dollars as penalty for readmitting patients within 30 days due to strict norms imposed by the Hospital Readmission Reduction Program. In this study, we develop two novel models: PURE (Predicting Unplanned Readmissions using Embeddings) and Hybrid DeepR, which uses the historical medical events of patients to predict readmissions within 30 days. Both these models are hybrid sequence models that leverage both sequential events (history of events) and static features (like gender, blood pressure) of the patients to mine patterns in the data. Our results are promising, and they benchmark previous results in predicting hospital readmissions. The contributions of this study add to existing literature on healthcare analytics

    Processing of Electronic Health Records using Deep Learning: A review

    Full text link
    Availability of large amount of clinical data is opening up new research avenues in a number of fields. An exciting field in this respect is healthcare, where secondary use of healthcare data is beginning to revolutionize healthcare. Except for availability of Big Data, both medical data from healthcare institutions (such as EMR data) and data generated from health and wellbeing devices (such as personal trackers), a significant contribution to this trend is also being made by recent advances on machine learning, specifically deep learning algorithms

    Developing Clinical Decision Support Systems for Sepsis Prediction Using Temporal and Non-Temporal Machine Learning Methods

    Get PDF
    In healthcare, diagnostic errors represent the biggest challenge to synthesize accurate treatments. In the United States, patient deaths due to misdiagnoses are estimated at 40,000 to 80,000 per year. It was also found that 30% of the annual healthcare spending was consumed on unnecessary services and other inefficiencies. The diagnostic errors could be reduced, and public health can be improved by applying machine learning and artificial intelligence in healthcare problems. This dissertation is an attempt to formulate clinical decision support systems and to develop new algorithms to reduce clinical errors.This dissertation aims at developing clinical decision support systems to diagnose sepsis in the early stages. The key feature of our work is that we captured the dynamics among body organs using Bayesian networks. The richness of the proposed model is measured not only by achieving high accuracy but also by utilizing fewer lab results.To further improve the accuracy of the clinical decision support system, we utilize longitudinal data to develop a mortality progression model. This part of the dissertation proposes a hidden Markov model (HMM) framework to model the mortality progression. In comparison to existing approaches, the proposed framework leverages the longitudinal data available in the electronic health records (EHR).In addition, this dissertation proposes an initialization procedure to train the parameters of HMM efficiently. The current HMM learning algorithms are sensitive to initialization. The proposed method computes an initial set of parameters by relaxing the time dependency in sequential time series data and incorporating the multinomial logistic regression.Finally, this dissertation compares the prognostic accuracy of two popularly used early sepsis diagnostic criteria: Systemic Inflammatory Response Syndrome (SIRS) and quick Sepsis-related Organ Failure Assessment (qSOFA). Using statistical and machine learning methods, we found that qSOFA is a better diagnostic criteria than SIRS. These findings will guide healthcare providers in selecting the best bedside diagnostic criteria

    An Evalution of Sepsis Initiatives to Reduce the Severity of Severe Sepsis in a Two-Hospital System

    Get PDF
    Sepsis is the most expensive clinical condition to treat, with a very high mortality rate (Torio & Moore, 2016). The goal of sepsis treatment is to intervene as early as possible utilizing established criteria. Several evidence-based approaches in the literature address early identification of sepsis, decreasing sepsis severity and reducing morbidity and mortality. Clinical Decision Support (CDS) are tools within certified electronic health records that provide clinicians with patient-specific knowledge presented at appropriate times that enhance decision-making and improve patient outcomes (Villegas & Moore, 2018). Electronic sepsis alerts are examples of CDS that are developed to monitor changes indicative of sepsis in the patient’s condition and alerting providers to expedite early intervention. Health care systems have invested millions of dollars in expanding electronic health record tools, including the CDS sepsis alert, in increasing the early identification of sepsis and implement early interventions. Yet, despite all these improvement initiatives, sepsis rates continue to rise. Yet, the opportunity for improving their use is missed due to the lack of evaluation of its effectiveness. This project was a program evaluation of one health care system’s sepsis CDS and associated improvement initiatives that are focused on the prevention of sepsis among adult medical-surgical patients. The W.K. Kellogg Step by Step Guide to Evaluation (2017) was used to conduct the program evaluation of their sepsis CDS, including electronic sepsis order sets, sepsis education, and an overhead code sepsis process. Despite these initiatives, the organization’s Medicare quality sepsis scores demonstrate that a large percentage of their patients are not receiving evidence-based sepsis care, as documented in the electronic health record (EHR). The analysis and recommendations provide needed information to guide future quality improvements in sepsis care to improve sepsis prevention, improve patient outcomes, and reduce health care costs. The use of systematic program evaluation methods can be used as a strategy to determine the improvement gains from a quality improvement project
    • …
    corecore