186 research outputs found

    A Review on Advances in Automated Plant Disease Detection

    Get PDF
    Plant diseases cause major yield and economic losses. To detect plant disease at early stages, selecting appropriate techniques is imperative as it affects the cost, diagnosis time, and accuracy. This research gives a comprehensive review of various plant disease detection methods based on the images used and processing algorithms applied. It systematically analyzes various traditional machine learning and deep learning algorithms used for processing visible and spectral range images, and comparatively evaluates the work done in literature in terms of datasets used, various image processing techniques employed, models utilized, and efficiency achieved. The study discusses the benefits and restrictions of each method along with the challenges to be addressed for rapid and accurate plant disease detection. Results show that for plant disease detection, deep learning outperforms traditional machine learning algorithms while visible range images are more widely used compared to spectral images

    Crop leaf disease detection and classification using machine learning and deep learning algorithms by visual symptoms: a review

    Get PDF
    A Quick and precise crop leaf disease detection is important to increasing agricultural yield in a sustainable manner. We present a comprehensive overview of recent research in the field of crop leaf disease prediction using image processing (IP), machine learning (ML) and deep learning (DL) techniques in this paper. Using these techniques, crop leaf disease prediction made it possible to get notable accuracies. This article presents a survey of research papers that presented the various methodologies, analyzes them in terms of the dataset, number of images, number of classes, algorithms used, convolutional neural networks (CNN) models employed, and overall performance achieved. Then, suggestions are prepared on the most appropriate algorithms to deploy in standard, mobile/embedded systems, Drones, Robots and unmanned aerial vehicles (UAV). We discussed the performance measures used and listed some of the limitations and future works that requires to be focus on, to extend real time automated crop leaf disease detection system

    Plant Disease Detection: Electronic System Design Empowered with Artificial Intelligence

    Get PDF
    Today, plant diseases have become a major threat to the development of agriculture and forestry, not only affecting the normal growth of plants but also causing food safety problems. Hence, it is necessary to identify and detect disease regions and types of plants as quickly as possible. We have developed a plant monitoring system consisting of sensors and cameras for early detection of plant diseases. First, we create a dataset based on the data collected from the strawberry plants and then use our dataset as well as some well-established public datasets to evaluate and compare the recent deep learning-based plant disease detection studies. Finally, we propose a solution to identify plant diseases using a ResNet model with a novel variable learning rate which changes during the testing phase. We have explored different learning rates and found out that the highest accuracy for classification of healthy and unhealthy strawberry plants is obtained with the learning rate of 0.01 at 99.77%. Experimental results confirm the effectiveness of the proposed system in achieving high disease detection accuracy

    Effective plant discrimination based on the combination of local binary pattern operators and multiclass support vector machine methods

    Get PDF
    Accurate crop and weed discrimination plays a critical role in addressing the challenges of weed management in agriculture. The use of herbicides is currently the most common approach to weed control. However, herbicide resistant plants have long been recognised as a major concern due to the excessive use of herbicides. Effective weed detection techniques can reduce the cost of weed management and improve crop quality and yield. A computationally efficient and robust plant classification algorithm is developed and applied to the classification of three crops: Brassica napus (canola), Zea mays (maize/corn), and radish. The developed algorithm is based on the combination of Local Binary Pattern (LBP) operators, for the extraction of crop leaf textural features and Support vector machine (SVM) method, for multiclass plant classification. This paper presents the first investigation of the accuracy of the combined LBP algorithms, trained using a large dataset of canola, radish and barley leaf images captured by a testing facility under simulated field conditions. The dataset has four subclasses, background, canola, corn, and radish, with 24,000 images used for training and 6000 images, for validation. The dataset is referred herein as “bccr-segset” and published online. In each subclass, plant images are collected at four crop growth stages. Experimentally, the algorithm demonstrates plant classification accuracy as high as 91.85%, for the four classes. © 2018 China Agricultural Universit

    Smart Farm-Care using a Deep Learning Model on Mobile Phones

    Get PDF
    Deep learning and its models have provided exciting solutions in various image processing applications like image segmentation, classification, labeling, etc., which paved the way to apply these models in agriculture to identify diseases in agricultural plants. The most visible symptoms of the disease initially appear on the leaves. To identify diseases found in leaf images, an accurate classification system with less size and complexity is developed using smartphones. A labeled dataset consisting of 3171 apple leaf images belonging to 4 different classes of diseases, including the healthy ones, is used for classification. In this work, four variants of MobileNet models - pre-trained on the ImageNet database, are retrained to diagnose diseases. The model’s variants differ based on their depth and resolution multiplier. The results show that the proposed model with 0.5 depth and 224 resolution performs well - achieving an accuracy of 99.6%. Later, the K-means algorithm is used to extract additional features, which helps improve the accuracy to 99.7% and also measures the number of pixels forming diseased spots, which helps in severity prediction. Doi: 10.28991/ESJ-2023-07-02-013 Full Text: PD

    Optimized Matrix Feature Analysis – Convolutional Neural Network (OMFA-CNN) Model for Potato Leaf Diseases Detection System

    Get PDF
    One of the most often grown crops is the potato. As a main food, potatoes are prioritised for cultivation worldwide. Because potatoes are such a rich source of vitamins and minerals, we can create a robust system for food security. However, a number of illnesses delay the growth of agriculture and harm potato output. Consequently, early disease identification can offer a better answer for effective crop production. In this research work aim is to classify and detect the potato leave (PL) diseases using OMFA-CNN deep learning model. An optimized matrix feature analysis-CNN deep learning model for PL disease detection is implemented. In the first phase, the PLs features are extracted from the potato leave images using K-means clustering image segmentation method. At the last phase, a new OMFA-CNN model are proposed using CNN to classify virus, and bacterial diseases of PLs, The PL disease dataset consists 2351 images gathered in real-time and from the Kaggle (PlantVillage) dataset. The implemented OMFA-CNN model attained 99.3 % precision and 99 % recall on potato disease detection. The implemented method is also compared with MASK RCNN,SVM and other models and attained significantly high precision and recall

    Local Binary Pattern based algorithms for the discrimination and detection of crops and weeds with similar morphologies

    Get PDF
    In cultivated agricultural fields, weeds are unwanted species that compete with the crop plants for nutrients, water, sunlight and soil, thus constraining their growth. Applying new real-time weed detection and spraying technologies to agriculture would enhance current farming practices, leading to higher crop yields and lower production costs. Various weed detection methods have been developed for Site-Specific Weed Management (SSWM) aimed at maximising the crop yield through efficient control of weeds. Blanket application of herbicide chemicals is currently the most popular weed eradication practice in weed management and weed invasion. However, the excessive use of herbicides has a detrimental impact on the human health, economy and environment. Before weeds are resistant to herbicides and respond better to weed control strategies, it is necessary to control them in the fallow, pre-sowing, early post-emergent and in pasture phases. Moreover, the development of herbicide resistance in weeds is the driving force for inventing precision and automation weed treatments. Various weed detection techniques have been developed to identify weed species in crop fields, aimed at improving the crop quality, reducing herbicide and water usage and minimising environmental impacts. In this thesis, Local Binary Pattern (LBP)-based algorithms are developed and tested experimentally, which are based on extracting dominant plant features from camera images to precisely detecting weeds from crops in real time. Based on the efficient computation and robustness of the first LBP method, an improved LBP-based method is developed based on using three different LBP operators for plant feature extraction in conjunction with a Support Vector Machine (SVM) method for multiclass plant classification. A 24,000-image dataset, collected using a testing facility under simulated field conditions (Testbed system), is used for algorithm training, validation and testing. The dataset, which is published online under the name “bccr-segset”, consists of four subclasses: background, Canola (Brassica napus), Corn (Zea mays), and Wild radish (Raphanus raphanistrum). In addition, the dataset comprises plant images collected at four crop growth stages, for each subclass. The computer-controlled Testbed is designed to rapidly label plant images and generate the “bccr-segset” dataset. Experimental results show that the classification accuracy of the improved LBP-based algorithm is 91.85%, for the four classes. Due to the similarity of the morphologies of the canola (crop) and wild radish (weed) leaves, the conventional LBP-based method has limited ability to discriminate broadleaf crops from weeds. To overcome this limitation and complex field conditions (illumination variation, poses, viewpoints, and occlusions), a novel LBP-based method (denoted k-FLBPCM) is developed to enhance the classification accuracy of crops and weeds with similar morphologies. Our contributions include (i) the use of opening and closing morphological operators in pre-processing of plant images, (ii) the development of the k-FLBPCM method by combining two methods, namely, the filtered local binary pattern (LBP) method and the contour-based masking method with a coefficient k, and (iii) the optimal use of SVM with the radial basis function (RBF) kernel to precisely identify broadleaf plants based on their distinctive features. The high performance of this k-FLBPCM method is demonstrated by experimentally attaining up to 98.63% classification accuracy at four different growth stages for all classes of the “bccr-segset” dataset. To evaluate performance of the k-FLBPCM algorithm in real-time, a comparison analysis between our novel method (k-FLBPCM) and deep convolutional neural networks (DCNNs) is conducted on morphologically similar crops and weeds. Various DCNN models, namely VGG-16, VGG-19, ResNet50 and InceptionV3, are optimised, by fine-tuning their hyper-parameters, and tested. Based on the experimental results on the “bccr-segset” dataset collected from the laboratory and the “fieldtrip_can_weeds” dataset collected from the field under practical environments, the classification accuracies of the DCNN models and the k-FLBPCM method are almost similar. Another experiment is conducted by training the algorithms with plant images obtained at mature stages and testing them at early stages. In this case, the new k-FLBPCM method outperformed the state-of-the-art CNN models in identifying small leaf shapes of canola-radish (crop-weed) at early growth stages, with an order of magnitude lower error rates in comparison with DCNN models. Furthermore, the execution time of the k-FLBPCM method during the training and test phases was faster than the DCNN counterparts, with an identification time difference of approximately 0.224ms per image for the laboratory dataset and 0.346ms per image for the field dataset. These results demonstrate the ability of the k-FLBPCM method to rapidly detect weeds from crops of similar appearance in real time with less data, and generalize to different size plants better than the CNN-based methods

    Early detection and quantification of verticillium wilt in olive using hyperspectral and thermal imagery over large areas

    Get PDF
    © 2015 by the authors. Automatic methods for an early detection of plant diseases (i.e., visible symptoms at early stages of disease development) using remote sensing are critical for precision crop protection. Verticillium wilt (VW) of olive caused by Verticillium dahliae can be controlled only if detected at early stages of development. Linear discriminant analysis (LDA) and support vector machine (SVM) classification methods were applied to classify V. dahliae severity using remote sensing at large scale. High-resolution thermal and hyperspectral imagery were acquired with a manned platform which flew a 3000-ha commercial olive area. LDA reached an overall accuracy of 59.0% and a κ of 0.487 while SVM obtained a higher overall accuracy, 79.2% with a similar κ, 0.495. However, LDA better classified trees at initial and low severity levels, reaching accuracies of 71.4 and 75.0%, respectively, in comparison with the 14.3% and 40.6% obtained by SVM. Normalized canopy temperature, chlorophyll fluorescence, structural, xanthophyll, chlorophyll, carotenoid and disease indices were found to be the best indicators for early and advanced stage infection by VW. These results demonstrate that the methods developed in other studies at orchard scale are valid for flights in large areas comprising several olive orchards differing in soil and crop management characteristics.Financial support for this research was provided by Project P08-AGR-03528 from “Consejería de Economía, Innovación y Ciencia” of Junta de Andalucía and the European Social Fund, and projects AGL-2012-37521 and AGL2012-40053-C03-01 from the Spanish “Ministerio de Economía y Competitividad” and the European Social Fund. Rocio Calderón is a recipient of research fellowship BES-2010-035511 from the Spanish “Ministerio de Ciencia e Innovación”.We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer Reviewe

    Image based Plant leaf disease detection using Deep learning

    Get PDF
    Agriculture is important for India. Every year growing variety of crops is at loss due to inefficiency in shipping, cultivation, pest infestation in crop and storage of government-subsidized crops.  There is reduction in production of good crops in both quality and quantity due to Plants being affected by diseases. Hence it is important for early detection and identification of diseases in plants. The proposed methodology consists of collection of Plant leaf dataset, Image preprocessing, Image Augmentation and Neural network training. The dataset is collected from ImageNet for training phase. The CNN technique is used to differentiate the healthy leaf from disease affected leaf. In image preprocessing resizing the image is carried out to reduce the training phase time. Image augmentation is performed in training phase by applying various transformation function on Plant images. The Network is trained by Caffenet deep learning framework. CNN is trained with ReLu (Rectified Linear Unit). The convolution base of CNN generates features from image through the multiple convolution layers and pooling layers. The classifier part of CNN classifies the image based on the features extracted from the convolution base. The classification is performed through the fully connected layers. The performance is measured using 10-fold cross validation function. The final layer uses activation function like softmax to categorize the outputs

    Long Short-Term Memory Recurrent Neural Networks for Plant disease Identification

    Get PDF
    Farming profitability is something on which economy profoundly depends. This is the one reason that sickness recognition in plants assumes a critical job in farming field, as having infection in plants are very common. In the event that legitimate consideration isn't taken here, it causes genuine consequences for plants and because of which particular item quality, amount or profitability is influenced. This paper displays an algorithm for image segmentation technique which is utilized for automatic identification and classification plant leaf infections. It additionally covers review on various classification techniques that can be utilized for plant leaf ailment discovery. As the infected regions vary in length it is difficult to develop a feature vector of identical finite length representing all the sequences. A simple method to go around this issue is given by Recurrent Neural Networks (RNN). In this work we separate a feature vector through the use of Long Short-Term Memory (LSTM) recurrent neural networks. The LSTM network recursively repeats and concentrates two limited vectors whose link yields finite length vector portrayal
    corecore