81 research outputs found

    How to interpret and apply the results of indirect calorimetry studies: A case-based tutorial.

    Get PDF
    Evidence is growing that the individual adjustment of energy targets guided by indirect calorimetry (IC) can improve outcome. With the development of a new generation of devices that are easier to use and rapid, it appears important to share knowledge and expertise that may be used to individualize nutrition care. Despite the focus of this tutorial being on one contemporary device, the principles of IC apply across existing devices and can assist tailoring the nutrition prescription and in assessing response to nutrition therapy. The present tutorial addresses its clinical application in intubated mechanically ventilated and spontaneously breathing adult patients (canopy), i.e. it covers the range from critical illness to outpatients. The cases that are presented show how the measured energy expenditure (mEE), and the respiratory quotient (RQ), i.e. the ratio of expired CO <sub>2</sub> to consumed O <sub>2</sub> , should be applied in different cases, to adapt and individualize nutrition prescription, as it is a good marker of over- or underfeeding at the different stages of disease. The RQ also informs about the patient's body's capacity to use different substrates: the variations of RQ indicating the metabolic changes revealing insufficient or excessive feeding. The different cases reflect the use of a new generation device as a metabolic monitor that should be combined with other clinical observations and laboratory biomarkers. The tutorial also points to some shortcomings of the method, proposing alternatives

    Microvesicles as mediators of inflammation in severe burn injury

    Get PDF
    The host response to a severe burn injury is characterised by exaggerated systemic inflammation. Early clinical manifestations include shock, respiratory failure, renal failure and immunosuppression. The signalling pathways that propagate the inflammatory response are unclear but have traditionally been thought to involve overspill of proinflammatory cytokines. The importance of microvesicles, sub-cellular membrane-bound particles, is increasingly being recognised in the context of intercellular communication. Although circulating microvesicles are elevated in proinflammatory states such as sepsis, their relevance to the post-burn inflammatory response has not previously been evaluated. We hypothesised that circulating microvesicles play a crucial role in propagating the post-burn inflammatory response. Our overall aims were to 1) optimise protocols for the processing and analysis of plasma samples for microvesicle content; 2) characterise the circulating microvesicle profile associated with severe burn injury; 3) develop in vitro techniques to assess microvesicle production and function. The major findings of this work were that microvesicles derived from leukocytes, neutrophils, monocytes and endothelial cells were significantly elevated within 24 hours of burn injury. Microvesicle levels fell rapidly and were significantly decreased by day two post-injury. Total leukocyte- and neutrophil-derived microvesicles were significantly higher in non-survivors of burn injury as compared to survivors. In vitro studies demonstrated that neutrophil microvesicle release could be elicited by incubation with opsonised heat-killed cells. Pilot analysis of burn patient samples, using an endothelial co-culture assay, suggested that microvesicles may regulate the innate immune response to burn injury. These findings indicated that circulating microvesicles are an important component of the post-burn inflammatory response. Their precise activity is likely to be subtype-specific but the association of neutrophil-derived microvesicles with patient outcome alludes to a key role in burn pathophysiology.Open Acces
    corecore