5,852 research outputs found

    An investigation into the effects of commencing haemodialysis in the critically ill

    Get PDF
    <b>Introduction:</b> We have aimed to describe haemodynamic changes when haemodialysis is instituted in the critically ill. 3 hypotheses are tested: 1)The initial session is associated with cardiovascular instability, 2)The initial session is associated with more cardiovascular instability compared to subsequent sessions, and 3)Looking at unstable sessions alone, there will be a greater proportion of potentially harmful changes in the initial sessions compared to subsequent ones. <b>Methods:</b> Data was collected for 209 patients, identifying 1605 dialysis sessions. Analysis was performed on hourly records, classifying sessions as stable/unstable by a cutoff of >+/-20% change in baseline physiology (HR/MAP). Data from 3 hours prior, and 4 hours after dialysis was included, and average and minimum values derived. 3 time comparisons were made (pre-HD:during, during HD:post, pre-HD:post). Initial sessions were analysed separately from subsequent sessions to derive 2 groups. If a session was identified as being unstable, then the nature of instability was examined by recording whether changes crossed defined physiological ranges. The changes seen in unstable sessions could be described as to their effects: being harmful/potentially harmful, or beneficial/potentially beneficial. <b>Results:</b> Discarding incomplete data, 181 initial and 1382 subsequent sessions were analysed. A session was deemed to be stable if there was no significant change (>+/-20%) in the time-averaged or minimum MAP/HR across time comparisons. By this definition 85/181 initial sessions were unstable (47%, 95% CI SEM 39.8-54.2). Therefore Hypothesis 1 is accepted. This compares to 44% of subsequent sessions (95% CI 41.1-46.3). Comparing these proportions and their respective CI gives a 95% CI for the standard error of the difference of -4% to 10%. Therefore Hypothesis 2 is rejected. In initial sessions there were 92/1020 harmful changes. This gives a proportion of 9.0% (95% CI SEM 7.4-10.9). In the subsequent sessions there were 712/7248 harmful changes. This gives a proportion of 9.8% (95% CI SEM 9.1-10.5). Comparing the two unpaired proportions gives a difference of -0.08% with a 95% CI of the SE of the difference of -2.5 to +1.2. Hypothesis 3 is rejected. Fisher’s exact test gives a result of p=0.68, reinforcing the lack of significant variance. <b>Conclusions:</b> Our results reject the claims that using haemodialysis is an inherently unstable choice of therapy. Although proportionally more of the initial sessions are classed as unstable, the majority of MAP and HR changes are beneficial in nature

    Prediction and visualization of acute kidney injury in intensive care unit using one-dimensional convolutional neural networks based on routinely collected data

    Get PDF
    Background: Acute kidney injury (AKI) occurs frequently in in-hospital patients, especially in the intensive care unit (ICU), due to various etiologies including septic shock. It is clinically important to identify high-risk patients at an early stage and perform the appropriate intervention. Methods: We proposed a system to predict AKI using one-dimensional convolutional neural networks (1D-CNN) with the real-time calculation of the probability of developing AKI, along with the visualization of the rationale behind prediction using score-weighted class activation mapping and guided backpropagation. The system was applied to predicting developing AKI based on the KDIGO guideline in time windows of 24 to 48 h using data of 0 to 24 h after admission to ICU. Results: The comparison result of multiple algorithms modeling time series data indicated that the proposed 1D-CNN model achieved higher performance compared to the other models, with the mean area under the receiver operating characteristic curve of 0.742 ± 0.010 for predicting stage 1, and 0.844 ± 0.029 for stage 2 AKI using the input of the vital signs, the demographic information, and serum creatinine values. The visualization results suggested the reasonable interpretation that time points with higher respiratory rate, lower blood pressure, as well as lower SpO2, had higher attention in terms of predicting AKI, and thus important for prediction. Conclusions: We presumed the proposed system's potential usefulness as it could be applied and transferred to almost any ICU setting that stored the time series data corresponding to vital signs

    A Novel Patient-Specific Model for Predicting Severe Oliguria; Development and Comparison With Kidney Disease: Improving Global Outcomes Acute Kidney Injury Classification

    Get PDF
    Objectives: The Kidney Disease: Improving Global Outcomes urine output criteria for acute kidney injury lack specificity for identifying patients at risk of adverse renal outcomes. The objective was to develop a model that analyses hourly urine output values in real time to identify those at risk of developing severe oliguria. Design: This was a retrospective cohort study utilizing prospectively collected data. Setting: A cardiac ICU in the United Kingdom. Patients: Patients undergoing cardiac surgery between January 2013 and November 2017. Interventions: None. Measurement and Main Results: Patients were randomly assigned to development (n = 981) and validation (n = 2,389) datasets. A patient-specific, dynamic Bayesian model was developed to predict future urine output on an hourly basis. Model discrimination and calibration for predicting severe oliguria ( 0.8) were identified and their outcomes were compared with those for low-risk patients and for patients who met the Kidney Disease: Improving Global Outcomes urine output criterion for acute kidney injury. Model discrimination was excellent at all time points (area under the curve > 0.9 for all). Calibration of the model’s predictions was also excellent. After adjustment using multivariable logistic regression, patients in the high-risk group were more likely to require renal replacement therapy (odds ratio, 10.4; 95% CI, 5.9–18.1), suffer prolonged hospital stay (odds ratio, 4.4; 95% CI, 3.0–6.4), and die in hospital (odds ratio, 6.4; 95% CI, 2.8–14.0) (p < 0.001 for all). Outcomes for those identified as high risk by the model were significantly worse than for patients who met the Kidney Disease: Improving Global Outcomes urine output criterion. Conclusions: This novel, patient-specific model identifies patients at increased risk of severe oliguria. Classification according to model predictions outperformed the Kidney Disease: Improving Global Outcomes urine output criterion. As the new model identifies patients at risk before severe oliguria develops it could potentially facilitate intervention to improve patient outcomes
    corecore