235,035 research outputs found

    ImageSieve: Exploratory search of museum archives with named entity-based faceted browsing

    Get PDF
    Over the last few years, faceted search emerged as an attractive alternative to the traditional "text box" search and has become one of the standard ways of interaction on many e-commerce sites. However, these applications of faceted search are limited to domains where the objects of interests have already been classified along several independent dimensions, such as price, year, or brand. While automatic approaches to generate faceted search interfaces were proposed, it is not yet clear to what extent the automatically-produced interfaces will be useful to real users, and whether their quality can match or surpass their manually-produced predecessors. The goal of this paper is to introduce an exploratory search interface called ImageSieve, which shares many features with traditional faceted browsing, but can function without the use of traditional faceted metadata. ImageSieve uses automatically extracted and classified named entities, which play important roles in many domains (such as news collections, image archives, etc.). We describe one specific application of ImageSieve for image search. Here, named entities extracted from the descriptions of the retrieved images are used to organize a faceted browsing interface, which then helps users to make sense of and further explore the retrieved images. The results of a user study of ImageSieve demonstrate that a faceted search system based on named entities can help users explore large collections and find relevant information more effectively

    Structuring visual exploratory analysis of skill demand

    No full text
    The analysis of increasingly large and diverse data for meaningful interpretation and question answering is handicapped by human cognitive limitations. Consequently, semi-automatic abstraction of complex data within structured information spaces becomes increasingly important, if its knowledge content is to support intuitive, exploratory discovery. Exploration of skill demand is an area where regularly updated, multi-dimensional data may be exploited to assess capability within the workforce to manage the demands of the modern, technology- and data-driven economy. The knowledge derived may be employed by skilled practitioners in defining career pathways, to identify where, when and how to update their skillsets in line with advancing technology and changing work demands. This same knowledge may also be used to identify the combination of skills essential in recruiting for new roles. To address the challenges inherent in exploring the complex, heterogeneous, dynamic data that feeds into such applications, we investigate the use of an ontology to guide structuring of the information space, to allow individuals and institutions to interactively explore and interpret the dynamic skill demand landscape for their specific needs. As a test case we consider the relatively new and highly dynamic field of Data Science, where insightful, exploratory data analysis and knowledge discovery are critical. We employ context-driven and task-centred scenarios to explore our research questions and guide iterative design, development and formative evaluation of our ontology-driven, visual exploratory discovery and analysis approach, to measure where it adds value to users’ analytical activity. Our findings reinforce the potential in our approach, and point us to future paths to build on

    Web 2.0 technologies for learning: the current landscape – opportunities, challenges and tensions

    Get PDF
    This is the first report from research commissioned by Becta into Web 2.0 technologies for learning at Key Stages 3 and 4. This report describes findings from an additional literature review of the then current landscape concerning learner use of Web 2.0 technologies and the implications for teachers, schools, local authorities and policy makers

    Education 2.0? Designing the web for teaching and learning: A Commentary by the Technology Enhanced Learning phase of the Teaching and Learning Research Programme

    Get PDF

    Emerging technologies for learning (volume 2)

    Get PDF

    Virtual Astronomy, Information Technology, and the New Scientific Methodology

    Get PDF
    All sciences, including astronomy, are now entering the era of information abundance. The exponentially increasing volume and complexity of modern data sets promises to transform the scientific practice, but also poses a number of common technological challenges. The Virtual Observatory concept is the astronomical community's response to these challenges: it aims to harness the progress in information technology in the service of astronomy, and at the same time provide a valuable testbed for information technology and applied computer science. Challenges broadly fall into two categories: data handling (or "data farming"), including issues such as archives, intelligent storage, databases, interoperability, fast networks, etc., and data mining, data understanding, and knowledge discovery, which include issues such as automated clustering and classification, multivariate correlation searches, pattern recognition, visualization in highly hyperdimensional parameter spaces, etc., as well as various applications of machine learning in these contexts. Such techniques are forming a methodological foundation for science with massive and complex data sets in general, and are likely to have a much broather impact on the modern society, commerce, information economy, security, etc. There is a powerful emerging synergy between the computationally enabled science and the science-driven computing, which will drive the progress in science, scholarship, and many other venues in the 21st century

    "Revolution? What Revolution?" Successes and limits of computing technologies in philosophy and religion

    Get PDF
    Computing technologies like other technological innovations in the modern West are inevitably introduced with the rhetoric of "revolution". Especially during the 1980s (the PC revolution) and 1990s (the Internet and Web revolutions), enthusiasts insistently celebrated radical changes— changes ostensibly inevitable and certainly as radical as those brought about by the invention of the printing press, if not the discovery of fire.\ud These enthusiasms now seem very "1990s�—in part as the revolution stumbled with the dot.com failures and the devastating impacts of 9/11. Moreover, as I will sketch out below, the patterns of diffusion and impact in philosophy and religion show both tremendous success, as certain revolutionary promises are indeed kept—as well as (sometimes spectacular) failures. Perhaps we use revolutionary rhetoric less frequently because the revolution has indeed succeeded: computing technologies, and many of the powers and potentials they bring us as scholars and religionists have become so ubiquitous and normal that they no longer seem "revolutionary at all. At the same time, many of the early hopes and promises instantiated in such specific projects as Artificial Intelligence and anticipations of virtual religious communities only have been dashed against the apparently intractable limits of even these most remarkable technologies. While these failures are usually forgotten they leave in their wake a clearer sense of what these new technologies can, and cannot do

    Interaction platform-orientated perspective in designing novel applications

    Get PDF
    The lack of HCI offerings in the invention of novel software applications and the bias of design knowledge towards desktop GUI make it difficult for us to design for novel scenarios and applications that leverage emerging computational technologies. These include new media platforms such as mobiles, interactive TV, tabletops and large multi-touch walls on which many of our future applications will operate. We argue that novel application design should come not from user-centred requirements engineering as in developing a conventional application, but from understanding the interaction characteristics of the new platforms. Ensuring general usability for a particular interaction platform without rigorously specifying envisaged usage contexts helps us to design an artifact that does not restrict the possible application contexts and yet is usable enough to help brainstorm its more exact place for future exploitation
    • …
    corecore