58,873 research outputs found

    Malware in the Future? Forecasting of Analyst Detection of Cyber Events

    Full text link
    There have been extensive efforts in government, academia, and industry to anticipate, forecast, and mitigate cyber attacks. A common approach is time-series forecasting of cyber attacks based on data from network telescopes, honeypots, and automated intrusion detection/prevention systems. This research has uncovered key insights such as systematicity in cyber attacks. Here, we propose an alternate perspective of this problem by performing forecasting of attacks that are analyst-detected and -verified occurrences of malware. We call these instances of malware cyber event data. Specifically, our dataset was analyst-detected incidents from a large operational Computer Security Service Provider (CSSP) for the U.S. Department of Defense, which rarely relies only on automated systems. Our data set consists of weekly counts of cyber events over approximately seven years. Since all cyber events were validated by analysts, our dataset is unlikely to have false positives which are often endemic in other sources of data. Further, the higher-quality data could be used for a number for resource allocation, estimation of security resources, and the development of effective risk-management strategies. We used a Bayesian State Space Model for forecasting and found that events one week ahead could be predicted. To quantify bursts, we used a Markov model. Our findings of systematicity in analyst-detected cyber attacks are consistent with previous work using other sources. The advanced information provided by a forecast may help with threat awareness by providing a probable value and range for future cyber events one week ahead. Other potential applications for cyber event forecasting include proactive allocation of resources and capabilities for cyber defense (e.g., analyst staffing and sensor configuration) in CSSPs. Enhanced threat awareness may improve cybersecurity.Comment: Revised version resubmitted to journa

    Increasing resilience of ATM networks using traffic monitoring and automated anomaly analysis

    Get PDF
    Systematic network monitoring can be the cornerstone for the dependable operation of safety-critical distributed systems. In this paper, we present our vision for informed anomaly detection through network monitoring and resilience measurements to increase the operators' visibility of ATM communication networks. We raise the question of how to determine the optimal level of automation in this safety-critical context, and we present a novel passive network monitoring system that can reveal network utilisation trends and traffic patterns in diverse timescales. Using network measurements, we derive resilience metrics and visualisations to enhance the operators' knowledge of the network and traffic behaviour, and allow for network planning and provisioning based on informed what-if analysis

    Cybersecurity Compliance and DoD Contractors

    Get PDF

    Formulating a Strategy for Securing High-Speed Rail in the United States, Research Report 12-03

    Get PDF
    This report presents an analysis of information relating to attacks, attempted attacks, and plots against high-speed rail (HSR) systems. It draws upon empirical data from MTI’s Database of Terrorist and Serious Criminal Attacks Against Public Surface Transportation and from reviews of selected HSR systems, including onsite observations. The report also examines the history of safety accidents and other HSR incidents that resulted in fatalities, injuries, or extensive asset damage to examine the inherent vulnerabilities (and strengths) of HSR systems and how these might affect the consequences of terrorist attacks. The study is divided into three parts: (1) an examination of security principles and measures; (2) an empirical examination of 33 attacks against HSR targets and a comparison of attacks against HSR targets with those against non-HSR targets; and (3) an examination of 73 safety incidents on 12 HRS systems. The purpose of this study is to develop an overall strategy for HSR security and to identify measures that could be applied to HSR systems currently under development in the United States. It is hoped that the report will provide useful guidance to both governmental authorities and transportation operators of current and future HSR systems

    APHRODITE: an Anomaly-based Architecture for False Positive Reduction

    Get PDF
    We present APHRODITE, an architecture designed to reduce false positives in network intrusion detection systems. APHRODITE works by detecting anomalies in the output traffic, and by correlating them with the alerts raised by the NIDS working on the input traffic. Benchmarks show a substantial reduction of false positives and that APHRODITE is effective also after a "quick setup", i.e. in the realistic case in which it has not been "trained" and set up optimall
    corecore