8,026 research outputs found

    MOOC Performance Prediction by Deep Learning from Raw Clickstream Data

    Get PDF

    A LEARNER INTERACTION STUDY OF DIFFERENT ACHIEVEMENT GROUPS IN MPOCS WITH LEARNING ANALYTICS TECHNIQUES

    Get PDF
    The purpose of this study was to conduct data-driven research by employing learning analytics methodology and Big Data in learning management systems (LMSs), and then to identify and compare learners’ interaction patterns in different achievement groups through different course processes in Massive Private Online Courses (MPOCs). Learner interaction is the foundation of a successful online learning experience. However, the uncertainties about the temporal and sequential patterns of online interaction and the lack of knowledge about using dynamic interaction traces in LMSs have prevented research on ways to improve interactive qualities and learning effectiveness in online learning. Also, most research focuses on the most popular online learning organization form, Massive Open Online Courses (MOOCs), and little online learning research has been conducted to investigate learners’ interaction behaviors in another important online learning organization form: MPOCs. To fill these needs, the study pays attention to investigate the frequent and effective interaction patterns in different achievement groups as well as in different course processes, and attaches importance to LMS trace data (log data) in better serving learners and instructors in online learning. Further, the learning analytics methodology and techniques are introduced here into online interaction research. I assume that learners with different achievements express different interaction characteristics. Therefore, the hypotheses in this study are: 1) the interaction activity patterns of the high-achievement group and the low-achievement group are different; 2) in both groups, interaction activity patterns evolve through different course processes (such as the learning process and the exam process). The final purpose is to find interaction activity patterns that characterize the different achievement groups in specific MPOCs courses. Some learning analytics approaches, including Hidden Markov models (HMMs) and other related measures, are taken into account to identify frequently occurring interaction activity sequence patterns of High/Low achievement groups in the Learning/Exam processes under MPOCs settings. The results demonstrate that High-achievement learners especially focused on content learning, assignments, and quizzes to consolidate their knowledge construction in both Learning and Exam processes, while Low-achievement learners significantly did not perform the same. Further, High-achievement learners adjusted their learning strategies based on the goals of different course processes; Low-achievement learners were inactive in the learning process and opportunistic in the exam process. In addition, despite achievements or course processes, all learners were most interested in checking their performance statements, but they engaged little in forum discussion and group learning. In sum, the comparative analysis implies that certain interaction patterns may distinguish the High-achievement learners from the Low-achievement ones, and learners change their patterns more or less based on different course processes. This study provides an attempt to conduct learner interaction research by employing learning analytics techniques. In the short term, the results will give in-depth knowledge of the dynamic interaction patterns of MPOCs learners. In the long term, the results will help learners to gain insight into and evaluate their learning, help instructors identify at-risk learners and adjust instructional strategies, help developers and administrators to build recommendation systems based on objective and comprehensive information, all of which in turn will help to improve the achievements of all learner groups in specific MPOC courses

    Utilizing Online Activity Data to Improve Face-to-Face Collaborative Learning in Technology-Enhanced Learning Environments

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 융합과학기술대학원 융합과학부(디지털정보융합전공), 2019. 2. Rhee, Wonjong .We live in a flood of information and face more and more complex problems that are difficult to be solved by a single individual. Collaboration with others is necessary to solve these problems. In educational practice, this leads to more attention on collaborative learning. Collaborative learning is a problem-solving process where students learn and work together with other peers to accomplish shared tasks. Through this group-based learning, students can develop collaborative problem-solving skills and improve the core competencies such as communication skills. However, there are many issues for collaborative learning to succeed, especially in a face-to-face learning environment. For example, group formation, the first step to design successful collaborative learning, requires a lot of time and effort. In addition, it is difficult for a small number of instructors to manage a large number of student groups when trying to monitor and support their learning process. These issues can amount hindrance to the effectiveness of face-to-face collaborative learning. The purpose of this dissertation is to enhance the effectiveness of face-to-face collaborative learning with online activity data. First, online activity data is explored to find whether it can capture relevant student characteristics for group formation. If meaningful characteristics can be captured from the data, the entire group formation process can be performed more efficiently because the task can be automated. Second, learning analytics dashboards are implemented to provide adaptive support during a class. The dashboards system would monitor each group's collaboration status by utilizing online activity data that is collected during class in real-time, and provide adaptive feedback according to the status. Lastly, a predictive model is built to detect at-risk groups by utilizing the online activity data. The model is trained based on various features that represent important learning behaviors of a collaboration group. The results reveal that online activity data can be utilized to address some of the issues we have in face-to-face collaborative learning. Student characteristics captured from the online activity data determined important group characteristics that significantly influenced group achievement. This indicates that student groups can be formed efficiently by utilizing the online activity data. In addition, the adaptive support provided by learning analytics dashboards significantly improved group process as well as achievement. Because the data allowed the dashboards system to monitor current learning status, appropriate feedback could be provided accordingly. This led to an improvement of both learning process and outcome. Finally, the predictive model could detect at-risk groups with high accuracy during the class. The random forest algorithm revealed important learning behaviors of a collaboration group that instructors should pay more attention to. The findings indicate that the online activity data can be utilized to address practical issues of face-to-face collaborative learning and to improve the group-based learning where the data is available. Based on the investigation results, this dissertation makes contributions to learning analytics research and face-to-face collaborative learning in technology-enhanced learning environments. First, it can provide a concrete case study and a guide for future research that may take a learning analytics approach and utilize student activity data. Second, it adds a research endeavor to address challenges in face-to-face collaborative learning, which can lead to substantial enhancement of learning in educational practice. Third, it suggests interdisciplinary problem-solving approaches that can be applied to the real classroom context where online activity data is increasingly available with advanced technologies.Abstract i Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Research questions 4 1.3. Organization 6 Chapter 2. Background 8 2.1. Learning analytics 8 2.2. Collaborative learning 22 2.3. Technology-enhanced learning environment 27 Chapter 3. Heterogeneous group formation with online activity data 35 3.1. Student characteristics for heterogeneous group formation 36 3.2. Method 41 3.3. Results 51 3.4. Discussion 59 3.5. Summary 64 Chapter 4. Real-time dashboard for adaptive feedback in face-to-face CSCL 67 4.1. Theoretical background 70 4.2. Dashboard characteristics 81 4.3. Evaluation of the dashboard 94 4.4. Discussion 107 4.5. Summary 114 Chapter 5. Real-time detection of at-risk groups in face-to-face CSCL 118 5.1. Important learning behaviors of group in collaborative argumentation 118 5.2. Method 120 5.3. Model performance and influential features 125 5.4. Discussion 129 5.5. Summary 132 Chapter 6. Conclusion 134 Bibliography 140Docto

    Explainable AI (XAI): Improving At-Risk Student Prediction with Theory-Guided Data Science, K-means Classification, and Genetic Programming

    Get PDF
    This research explores the use of eXplainable Artificial Intelligence (XAI) in Educational Data Mining (EDM) to improve the performance and explainability of artificial intelligence (AI) and machine learning (ML) models predicting at-risk students. Explainable predictions provide students and educators with more insight into at-risk indicators and causes, which facilitates instructional intervention guidance. Historically, low student retention has been prevalent across the globe as nations have implemented a wide range of interventions (e.g., policies, funding, and academic strategies) with only minimal improvements in recent years. In the US, recent attrition rates indicate two out of five first-time freshman students will not graduate from the same four-year institution within six years. In response, emerging AI research leveraging recent advancements in Deep Learning has demonstrated high predictive accuracy for identifying at-risk students, which is useful for planning instructional interventions. However, research suggested a general trade-off between performance and explainability of predictive models. Those that outperform, such as deep neural networks (DNN), are highly complex and considered black boxes (i.e., systems that are difficult to explain, interpret, and understand). The lack of model transparency/explainability results in shallow predictions with limited feedback prohibiting useful intervention guidance. Furthermore, concerns for trust and ethical use are raised for decision-making applications that involve humans, such as health, safety, and education. To address low student retention and the lack of interpretable models, this research explored the use of eXplainable Artificial Intelligence (XAI) in Educational Data Mining (EDM) to improve instruction and learning. More specifically, XAI has the potential to enhance the performance and explainability of AI/ML models predicting at-risk students. The scope of this study includes a hybrid research design comprising: (1) a systematic literature review of XAI and EDM applications in education; (2) the development of a theory-guided feature selection (TGFS) conceptual learning model; and (3) an EDM study exploring the efficacy of a TGFS XAI model. The EDM study implemented K-Means Classification for explorative (unsupervised) and predictive (supervised) analysis in addition to assessing Genetic Programming (GP), a type of XAI model, predictive performance, and explainability against common AI/ML models. Online student activity and performance data were collected from a learning management system (LMS) from a four-year higher education institution. Student data was anonymized and protected to ensure data privacy and security. Data was aggregated at weekly intervals to compute and assess the predictive performance (sensitivity, recall, and f-1 score) over time. Mean differences and effect sizes are reported at the .05 significance level. Reliability and validity are improved by implementing research best practices
    corecore