1,980 research outputs found

    An economic market for the brokering of time and budget guarantees

    Get PDF
    Grids offer best effort services to users. Service level agreements offer the opportunity to provide guarantees upon services offered, in such a way that it captures the users’ requirements, while also considering concerns of the service providers. This is achieved via a process of converging requirements and service cost values from both sides towards an agreement. This paper presents the intelligent scheduling for quality of service market-oriented mechanism for brokering guarantees upon completion time and cost for jobs submitted to a batch-oriented compute service. Web Services agreement (negotiation) is used along with the planning of schedules in determining pricing, ensuring that jobs become prioritised depending on their budget constraints. An evaluation is performed to demonstrate how market mechanisms can be used to achieve this, whilst also showing the effects that scheduling algorithms can have upon the market in terms of rescheduling. The evaluation is completed with a comparison of the broker’s capabilities in relation to the literature

    New Results on Online Resource Minimization

    Full text link
    We consider the online resource minimization problem in which jobs with hard deadlines arrive online over time at their release dates. The task is to determine a feasible schedule on a minimum number of machines. We rigorously study this problem and derive various algorithms with small constant competitive ratios for interesting restricted problem variants. As the most important special case, we consider scheduling jobs with agreeable deadlines. We provide the first constant ratio competitive algorithm for the non-preemptive setting, which is of particular interest with regard to the known strong lower bound of n for the general problem. For the preemptive setting, we show that the natural algorithm LLF achieves a constant ratio for agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)). We also give an O(log n)-competitive algorithm for the general preemptive problem, which improves upon the known O(p_max/p_min)-competitive algorithm. Our algorithm maintains a dynamic partition of the job set into loose and tight jobs and schedules each (temporal) subset individually on separate sets of machines. The key is a characterization of how the decrease in the relative laxity of jobs influences the optimum number of machines. To achieve this we derive a compact expression of the optimum value, which might be of independent interest. We complement the general algorithmic result by showing lower bounds that rule out that other known algorithms may yield a similar performance guarantee

    Maintenance activities scheduling under competencies constraints.

    No full text
    International audienceCompetencies management in the industry is one of the most important keys in order to obtain good performance with production means. Especially in maintenance services field where the different practical knowledges or skills are their working tools. We propose here a methodology, which compares the human resource with parallel machine. As human resource competence levels of each are all differents, they are considered like unrelated parallel machines. Our aim is to assign tasks to the adequate resources by minimizing time treatment for each task and the makespan

    D-SPACE4Cloud: A Design Tool for Big Data Applications

    Get PDF
    The last years have seen a steep rise in data generation worldwide, with the development and widespread adoption of several software projects targeting the Big Data paradigm. Many companies currently engage in Big Data analytics as part of their core business activities, nonetheless there are no tools and techniques to support the design of the underlying hardware configuration backing such systems. In particular, the focus in this report is set on Cloud deployed clusters, which represent a cost-effective alternative to on premises installations. We propose a novel tool implementing a battery of optimization and prediction techniques integrated so as to efficiently assess several alternative resource configurations, in order to determine the minimum cost cluster deployment satisfying QoS constraints. Further, the experimental campaign conducted on real systems shows the validity and relevance of the proposed method
    • …
    corecore