138,467 research outputs found

    Sequentializing Parameterized Programs

    Full text link
    We exhibit assertion-preserving (reachability preserving) transformations from parameterized concurrent shared-memory programs, under a k-round scheduling of processes, to sequential programs. The salient feature of the sequential program is that it tracks the local variables of only one thread at any point, and uses only O(k) copies of shared variables (it does not use extra counters, not even one counter to keep track of the number of threads). Sequentialization is achieved using the concept of a linear interface that captures the effect an unbounded block of processes have on the shared state in a k-round schedule. Our transformation utilizes linear interfaces to sequentialize the program, and to ensure the sequential program explores only reachable states and preserves local invariants.Comment: In Proceedings FIT 2012, arXiv:1207.348

    DD-α\alphaAMG on QPACE 3

    Full text link
    We describe our experience porting the Regensburg implementation of the DD-α\alphaAMG solver from QPACE 2 to QPACE 3. We first review how the code was ported from the first generation Intel Xeon Phi processor (Knights Corner) to its successor (Knights Landing). We then describe the modifications in the communication library necessitated by the switch from InfiniBand to Omni-Path. Finally, we present the performance of the code on a single processor as well as the scaling on many nodes, where in both cases the speedup factor is close to the theoretical expectations.Comment: 12 pages, 6 figures, Proceedings of Lattice 201

    A Cost-based Optimizer for Gradient Descent Optimization

    Full text link
    As the use of machine learning (ML) permeates into diverse application domains, there is an urgent need to support a declarative framework for ML. Ideally, a user will specify an ML task in a high-level and easy-to-use language and the framework will invoke the appropriate algorithms and system configurations to execute it. An important observation towards designing such a framework is that many ML tasks can be expressed as mathematical optimization problems, which take a specific form. Furthermore, these optimization problems can be efficiently solved using variations of the gradient descent (GD) algorithm. Thus, to decouple a user specification of an ML task from its execution, a key component is a GD optimizer. We propose a cost-based GD optimizer that selects the best GD plan for a given ML task. To build our optimizer, we introduce a set of abstract operators for expressing GD algorithms and propose a novel approach to estimate the number of iterations a GD algorithm requires to converge. Extensive experiments on real and synthetic datasets show that our optimizer not only chooses the best GD plan but also allows for optimizations that achieve orders of magnitude performance speed-up.Comment: Accepted at SIGMOD 201

    Evolving NoSQL Databases Without Downtime

    Full text link
    NoSQL databases like Redis, Cassandra, and MongoDB are increasingly popular because they are flexible, lightweight, and easy to work with. Applications that use these databases will evolve over time, sometimes necessitating (or preferring) a change to the format or organization of the data. The problem we address in this paper is: How can we support the evolution of high-availability applications and their NoSQL data online, without excessive delays or interruptions, even in the presence of backward-incompatible data format changes? We present KVolve, an extension to the popular Redis NoSQL database, as a solution to this problem. KVolve permits a developer to submit an upgrade specification that defines how to transform existing data to the newest version. This transformation is applied lazily as applications interact with the database, thus avoiding long pause times. We demonstrate that KVolve is expressive enough to support substantial practical updates, including format changes to RedisFS, a Redis-backed file system, while imposing essentially no overhead in general use and minimal pause times during updates.Comment: Update to writing/structur

    Tester versus Bug: A Generic Framework for Model-Based Testing via Games

    Get PDF
    We propose a generic game-based approach for test case generation. We set up a game between the tester and the System Under Test, in such a way that test cases correspond to game strategies, and the conformance relation ioco corresponds to alternating refinement. We show that different test assumptions from the literature can be easily incorporated, by slightly varying the moves in the games and their outcomes. In this way, our framework allows a wide plethora of game-theoretic techniques to be deployed for model based testing.Comment: In Proceedings GandALF 2018, arXiv:1809.0241

    On-Demand Big Data Integration: A Hybrid ETL Approach for Reproducible Scientific Research

    Full text link
    Scientific research requires access, analysis, and sharing of data that is distributed across various heterogeneous data sources at the scale of the Internet. An eager ETL process constructs an integrated data repository as its first step, integrating and loading data in its entirety from the data sources. The bootstrapping of this process is not efficient for scientific research that requires access to data from very large and typically numerous distributed data sources. a lazy ETL process loads only the metadata, but still eagerly. Lazy ETL is faster in bootstrapping. However, queries on the integrated data repository of eager ETL perform faster, due to the availability of the entire data beforehand. In this paper, we propose a novel ETL approach for scientific data integration, as a hybrid of eager and lazy ETL approaches, and applied both to data as well as metadata. This way, Hybrid ETL supports incremental integration and loading of metadata and data from the data sources. We incorporate a human-in-the-loop approach, to enhance the hybrid ETL, with selective data integration driven by the user queries and sharing of integrated data between users. We implement our hybrid ETL approach in a prototype platform, Obidos, and evaluate it in the context of data sharing for medical research. Obidos outperforms both the eager ETL and lazy ETL approaches, for scientific research data integration and sharing, through its selective loading of data and metadata, while storing the integrated data in a scalable integrated data repository.Comment: Pre-print Submitted to the DMAH Special Issue of the Springer DAPD Journa

    Reachability Analysis of Communicating Pushdown Systems

    Full text link
    The reachability analysis of recursive programs that communicate asynchronously over reliable FIFO channels calls for restrictions to ensure decidability. Our first result characterizes communication topologies with a decidable reachability problem restricted to eager runs (i.e., runs where messages are either received immediately after being sent, or never received). The problem is EXPTIME-complete in the decidable case. The second result is a doubly exponential time algorithm for bounded context analysis in this setting, together with a matching lower bound. Both results extend and improve previous work from La Torre et al
    corecore