11 research outputs found

    An assessment of tropical dryland forest ecosystem biomass and climate change impacts in the Kavango-Zambezi (KAZA) region of Southern Africa

    Get PDF
    The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are highly susceptible to disturbances from an increase in human population, wildlife pressures and the impacts of climate change. In this environment, reliable forest extent and structure estimates are difficult to obtain because of the size and remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally well-suited to monitoring forest characteristics, there remain large uncertainties about its application for assessing changes at a regional scale to quantify forest structure and biomass in dry forest environments. This thesis presents research that combines Synthetic Aperture Radar, multispectral satellite imagery and climatological data with an inventory from a ground survey of woodland in Botswana and Namibia in 2019. The research utilised a multi-method approach including parametric and non-parametric algorithms and change detection models to address the following objectives: (1) To assess the feasibility of using openly accessible remote sensing data to estimate the dryland forest above ground biomass (2) to quantify the detail of vegetation dynamics using extensive archives of time series satellite data; (3) to investigate the relationship between fire, soil moisture, and drought on dryland vegetation as a means of characterising spatiotemporal changes in aridity. The results establish that a combination of radar and multispectral imagery produced the best fit to the ground observations for estimating forest above ground biomass. Modelling of the time-series shows that it is possible to identify abrupt changes, longer-term trends and seasonality in forest dynamics. The time series analysis of fire shows that about 75% of the study area burned at least once within the 17-year monitoring period, with the national parks more frequently affected than other protected areas. The results presented show a significant increase in dryness over the past 2 decades, with arid and semi-arid regions encroaching at the expense of dry sub-humid, particularly in the south of the region, notably between 2011-2019

    Land cover change from national to global scales:A spatiotemporal assessment of trajectories, transitions and drivers

    Get PDF
    Changes in global land cover (LC) have significant consequences for global environmental change, impacting the sustainability of biogeochemical cycles, ecosystem services, biodiversity, and food security. Different forms of LC change have taken place across the world in recent decades due to a combination of natural and anthropogenic drivers, however, the types of change and rates of change have traditionally been hard to quantify. This thesis exploits the properties of the recently released ESA-CCI-LC product – an internally consistent, high-resolution annual time-series of global LC extending from 1992 to 2018. Specifically, this thesis uses a combination of trajectories and transition maps to quantify LC changes over time at national, continental and global scales, in order to develop a deeper understanding of what, where and when significant changes in LC have taken place and relates these to natural and anthropogenic drivers. This thesis presents three analytical chapters that contribute to achieving the objectives and the overarching aim of the thesis. The first analytical chapter initially focuses on the Nile Delta region of Egypt, one of the most densely populated and rapidly urbanising regions globally, to quantify historic rates of urbanisation across the fertile agricultural land, before modelling a series of alternative futures in which these lands are largely protected from future urban expansion. The results show that 74,600 hectares of fertile agricultural land in the Nile Delta (Old Lands) was lost to urban expansion between 1992 and 2015. Furthermore, a scenario that encouraged urban expansion into the desert and adjacent to areas of existing high population density could be achieved, hence preserving large areas of fertile agricultural land within the Nile Delta. The second analytical chapter goes on to examine LC changes across sub-Saharan Africa (SSA), a complex and diverse environment, through the joint lenses of political regions and ecoregions, differentiating between natural and anthropogenic signals of change and relating to likely drivers. The results reveal key LC change processes at a range of spatial scales, and identify hotspots of LC change. The major five key LC change processes were: (i) “gain of dry forests” covered the largest extent and was distributed across the whole of SSA; (ii) “greening of deserts” found adjacent to desert areas (e.g., the Sahel belt); (iii) “loss of tree-dominated savanna” extending mainly across South-eastern Africa; (iv) “loss of shrub-dominated savanna” stretching across West Africa, and “loss of tropical rainforests” unexpectedly covering the smallest extent, mainly in the DRC, West Africa and Madagascar. The final analytical chapter considers LC change at the global scale, providing a comprehensive assessment of LC gains and losses, trajectories and transitions, including a complete assessment of associated uncertainties. This chapter highlights variability between continents and identifies locations of high LC dynamism, recognising global hotspots for sustainability challenges. At the national scale, the chapter identifies the top 10 countries with the largest percentages of forest loss and urban expansion globally. The results show that the majority of these countries have stabilised their forest losses, however, urban expansion was consistently on the rise in all countries. The thesis concludes with recommendations for future research as global LC products become more refined (spatially, temporally and thematically) allowing deeper insights into the causes and consequences of global LC change to be determined

    EVI Time-Series Breakpoint Detection Using Convolutional Networks for Online Deforestation Monitoring in Chaco Forest

    No full text
    The Dry Chaco Forest has the highest absolute deforestation rates of all Argentinian forests (current deforestation rate of 150 000 ha yr-1, 0.85% yr-1). The deforestation process is seen as a breakpoint in the enhanced vegetation index (EVI) time series, associated with the change from a typical forest phenology pattern to something else (e.g., bare soil, pasture, and cropland). Therefore, to monitor this process, a near real-time time-series breakpoint-detection model is needed. In this article, we exploited the 18-year-long MODIS EVI time-series data to train a temporal pattern classification model based on convolutional neural networks. Model architecture parameters (optimizer, number of hidden layers, number of neurons, and so on) were selected using an optimization procedure. The trained model then tries to estimate the probability that a given 'time-series segment' corresponds to a deforestation event. The model was validated using in situ data derived from high-resolution images. Results are promising, since the model presents good performance for the validation data set [F1-score = 0.85, {fpr} = 0.0012 (of the order of the true deforestation rate), {tpr} = 0.8 , for a sample size = 50 Ă— 10{3} ] and average performance in a yearly analysis (F1-score = 0.6, sample size = 1120 Ă— 10{3} ). Model performance was studied using two diagnostic tools: activation maps and model ensemble error estimations. Results show that proposed model presents good extrapolation capabilities, but its maximum F1-score is bounded by error in the available data set (in particular, mislabeled deforestation events).Fil: Grings, Francisco Matias. Consejo Nacional de InvestigaciĂłnes CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; ArgentinaFil: Roitberg, Esteban Gabriel. Consejo Nacional de InvestigaciĂłnes CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; ArgentinaFil: Barraza Bernadas, VerĂłnica Daniela. Consejo Nacional de InvestigaciĂłnes CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂ­a y FĂ­sica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂ­a y FĂ­sica del Espacio; Argentin
    corecore