17 research outputs found

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: ‱ Introduction‱ Internet of Things Strategic Research and Innovation Agenda‱ Internet of Things in the industrial context: Time for deployment.‱ Integration of heterogeneous smart objects, applications and services‱ Evolution from device to semantic and business interoperability‱ Software define and virtualization of network resources‱ Innovation through interoperability and standardisation when everything is connected anytime at anyplace‱ Dynamic context-aware scalable and trust-based IoT Security, Privacy framework‱ Federated Cloud service management and the Internet of Things‱ Internet of Things Application

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    A model-based runtime environment for adapting communication systems

    Full text link
    With increasing network sizes, mobility, and traffic, it becomes a challenging task to achieve goals such as continuously delivering a satisfying service quality. Self-adaptive approaches use feedback loops to adapt a managed resource at runtime according to changes in the execution context. Adding self-adaptive capabilities to communication systems-computer networks as well as supporting structures such as overlays or middleware-is a major research focus. However, making a communication system self-adaptive is a challenging task for communication system developers. First, the distributed nature of such systems requires the collection of monitoring information from multiple hosts and the adaptation of distributed components. Second, communication systems consist of heterogeneous components, which are, e.g., developed in different programming languages. Third, system developers typically lack knowledge about the development of self-adaptive systems. Hence, this work's overall goal is to allow system developers to focus on making a (legacy) communication system adaptive. Motivated by these observations, this thesis proposes a model-based runtime environment for adapting communication systems called REACT. In contrast to self-adaptation frameworks, which offer a standard way to build self-adaptive applications, we refer to REACT as a runtime environment, i.e., a platform that is additionally able to plan and execute adaptations based on user-specified adaptation behavior. REACT includes the support for decentralized adaptation logics and distributed systems, multiple programming languages, as well as tool support and assistance for developers. The developer support is achieved using model-based techniques for specifying the reconfiguration behavior of the adaptation logic. Also, this thesis proposes an easy-to-follow development process. As part of that, it is needed to monitor the reconfiguration behavior of the self-adaptive system. Hence, this work also presents two dashboard-based visualization approaches called CoalaViz and EnTrace for providing traceability of self-adaptive systems for system developers and administrators. This thesis follows a design science research methodology resulting in the design and implementation of the final artifacts. By that, this dissertation presents different REACT Loops, including specific ways to model and plan the adaptive behavior using satisfiability, mixed-integer linear programming, and constraint solvers. The prototypes of these approaches, including the two visualization solutions, are evaluated in multiple use cases. Therefore, this work provides an end-to-end solution for specifying the adaptive behavior, connecting a managed resource, deploying the system, as well as debugging and monitoring it

    Leveraging Machine Learning Techniques towards Intelligent Networking Automation

    Get PDF
    In this thesis, we address some of the challenges that the Intelligent Networking Automation (INA) paradigm poses. Our goal is to design schemes leveraging Machine Learning (ML) techniques to cope with situations that involve hard decision-making actions. The proposed solutions are data-driven and consist of an agent that operates at network elements such as routers, switches, or network servers. The data are gathered from realistic scenarios, either actual network deployments or emulated environments. To evaluate the enhancements that the designed schemes provide, we compare our solutions to non-intelligent ones. Additionally, we assess the trade-off between the obtained improvements and the computational costs of implementing the proposed mechanisms. Accordingly, this thesis tackles the challenges that four specific research problems present. The first topic addresses the problem of balancing traffic in dense Internet of Things (IoT) network scenarios where the end devices and the Base Stations (BSs) form complex networks. By applying ML techniques to discover patterns in the association between the end devices and the BSs, the proposed scheme can balance the traffic load in a IoT network to increase the packet delivery ratio and reduce the energy cost of data delivery. The second research topic proposes an intelligent congestion control for internet connections at edge network elements. The design includes a congestion predictor based on an Artificial Neural Network (ANN) and an Active Queue Management (AQM) parameter tuner. Similarly, the third research topic includes an intelligent solution to the inter-domain congestion. Different from second topic, this problem considers the preservation of the private network data by means of Federated Learning (FL), since network elements of several organizations participate in the intelligent process. Finally, the fourth research topic refers to a framework to efficiently gathering network telemetry (NT) data. The proposed solution considers a traffic-aware approach so that the NT is intelligently collected and transmitted by the network elements. All the proposed schemes are evaluated through use cases considering standardized networking mechanisms. Therefore, we envision that the solutions of these specific problems encompass a set of methods that can be utilized in real-world scenarios towards the realization of the INA paradigm

    Contributions to topology discovery, self-healing and VNF placement in software-defined and virtualized networks

    Get PDF
    The evolution of information and communication technologies (e.g. cloud computing, the Internet of Things (IoT) and 5G, among others) has enabled a large market of applications and network services for a massive number of users connected to the Internet. Achieving high programmability while decreasing complexity and costs has become an essential aim of networking research due to the ever-increasing pressure generated by these applications and services. However, meeting these goals is an almost impossible task using traditional IP networks. Software-Defined Networking (SDN) is an emerging network architecture that could address the needs of service providers and network operators. This new technology consists in decoupling the control plane from the data plane, enabling the centralization of control functions on a concentrated or distributed platform. It also creates an abstraction between the network infrastructure and network applications, which allows for designing more flexible and programmable networks. Recent trends of increased user demands, the explosion of Internet traffic and diverse service requirements have further driven the interest in the potential capabilities of SDN to enable the introduction of new protocols and traffic management models. This doctoral research is focused on improving high-level policies and control strategies, which are becoming increasingly important given the limitations of current solutions for large-scale SDN environments. Specifically, the three largest challenges addressed in the development of this thesis are related to the processes of topology discovery, fault recovery and Virtual Network Function (VNF) placement in software-defined and virtualized networks. These challenges led to the design of a set of effective techniques, ranging from network protocols to optimal and heuristic algorithms, intended to solve existing problems and contribute to the deployment and adoption of such programmable networks.For the first challenge, this work presents a novel protocol that, unlike existing approaches, enables a distributed layer 2 discovery without the need for previous IP configurations or controller knowledge of the network. By using this mechanism, the SDN controller can discover the network view without incurring scalability issues, while taking advantage of the shortest control paths toward each switch. Moreover, this novel approach achieves noticeable improvement with respect to state-of-the-art techniques. To address the resilience concern of SDN, we propose a self-healing mechanism that recovers the control plane connectivity in SDN-managed environments without overburdening the controller performance. The main idea underlying this proposal is to enable real-time recovery of control paths in the face of failures without the intervention of a controller. Obtained results show that the proposed approach recovers the control topology efficiently in terms of time and message load over a wide range of generated networks. The third contribution made in this thesis combines topology knowledge with bin packing techniques in order to efficiently place the required VNF. An online heuristic algorithm with low-complexity was developed as a suitable solution for dynamic infrastructures. Extensive simulations, using network topologies representative of different scales, validate the good performance of the proposed approaches regarding the number of required instances and the delay among deployed functions. Additionally, the proposed heuristic algorithm improves the execution times by a fifth order of magnitude compared to the optimal formulation of this problem.Postprint (published version

    Autonomic Computing Enabled Cooperative Networked Design

    Full text link

    An architecture for software defined wireless networking

    Get PDF
    Software defined networking, characterized by a clear separation of the control and data planes, is being adopted as a novel paradigm for wired networking. With SDN, network operators can run their infrastructure more efficiently, supporting faster deployment of new services while enabling key features such as virtualization. In this article, we adopt an SDN-like approach applied to wireless mobile networks that will not only benefit from the same features as in the wired case, but will also leverage on the distinct features of mobile deployments to push improvements even further. We illustrate with a number of representative use cases the benefits of the adoption of the proposed architecture, which is detailed in terms of modules, interfaces, and high-level signaling. We also review the ongoing standardization efforts, and discuss the potential advantages and weaknesses, and the need for a coordinated approach.The research leading to these results has been partly funded by the European Community's Seventh Framework Programme FP7/2007–2013 under grant agreement no. 317941-project iJOIN, http://www.ict-ijoin.eu/Publicad

    Les opérateurs sauront-ils survivre dans un monde en constante évolution? Considérations techniques conduisant à des scénarios de rupture

    Get PDF
    Le secteur des tĂ©lĂ©communications passe par une phase dĂ©licate en raison de profondes mutations technologiques, principalement motivĂ©es par le dĂ©veloppement de l'Internet. Elles ont un impact majeur sur l'industrie des tĂ©lĂ©communications dans son ensemble et, par consĂ©quent, sur les futurs dĂ©ploiements des nouveaux rĂ©seaux, plateformes et services. L'Ă©volution de l'Internet a un impact particuliĂšrement fort sur les opĂ©rateurs des tĂ©lĂ©communications (Telcos). En fait, l'industrie des tĂ©lĂ©communications est Ă  la veille de changements majeurs en raison de nombreux facteurs, comme par exemple la banalisation progressive de la connectivitĂ©, la domination dans le domaine des services de sociĂ©tĂ©s du web (Webcos), l'importance croissante de solutions Ă  base de logiciels et la flexibilitĂ© qu'elles introduisent (par rapport au systĂšme statique des opĂ©rateurs tĂ©lĂ©coms). Cette thĂšse Ă©labore, propose et compare les scĂ©narios possibles basĂ©s sur des solutions et des approches qui sont technologiquement viables. Les scĂ©narios identifiĂ©s couvrent un large Ă©ventail de possibilitĂ©s: 1) Telco traditionnel; 2) Telco transporteur de Bits; 3) Telco facilitateur de Plateforme; 4) Telco fournisseur de services; 5) Disparition des Telco. Pour chaque scĂ©nario, une plateforme viable (selon le point de vue des opĂ©rateurs tĂ©lĂ©coms) est dĂ©crite avec ses avantages potentiels et le portefeuille de services qui pourraient ĂȘtre fournisThe telecommunications industry is going through a difficult phase because of profound technological changes, mainly originated by the development of the Internet. They have a major impact on the telecommunications industry as a whole and, consequently, the future deployment of new networks, platforms and services. The evolution of the Internet has a particularly strong impact on telecommunications operators (Telcos). In fact, the telecommunications industry is on the verge of major changes due to many factors, such as the gradual commoditization of connectivity, the dominance of web services companies (Webcos), the growing importance of software based solutions that introduce flexibility (compared to static system of telecom operators). This thesis develops, proposes and compares plausible future scenarios based on future solutions and approaches that will be technologically feasible and viable. Identified scenarios cover a wide range of possibilities: 1) Traditional Telco; 2) Telco as Bit Carrier; 3) Telco as Platform Provider; 4) Telco as Service Provider; 5) Telco Disappearance. For each scenario, a viable platform (from the point of view of telecom operators) is described highlighting the enabled service portfolio and its potential benefitsEVRY-INT (912282302) / SudocSudocFranceF
    corecore