2,235 research outputs found
Summary of Research 1994
The views expressed in this report are those of the authors and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.This report contains 359 summaries of research projects which were carried out
under funding of the Naval Postgraduate School Research Program. A list of recent
publications is also included which consists of conference presentations and
publications, books, contributions to books, published journal papers, and
technical reports. The research was conducted in the areas of Aeronautics and
Astronautics, Computer Science, Electrical and Computer Engineering, Mathematics,
Mechanical Engineering, Meteorology, National Security Affairs, Oceanography,
Operations Research, Physics, and Systems Management. This also includes research
by the Command, Control and Communications (C3) Academic Group, Electronic Warfare
Academic Group, Space Systems Academic Group, and the Undersea Warfare Academic
Group
Reports to the President
A compilation of annual reports for the 1985-1986 academic year, including a report from the President of the Massachusetts Institute of Technology, as well as reports from the academic and administrative units of the Institute. The reports outline the year's goals, accomplishments, honors and awards, and future plans
Radar studies of the moon Quarterly progress report no. 2, 1 Feb. - 30 Apr. 1966
Radar study of lunar surface - scattering of radio waves, polarization observations, shadowing effect on wave backscattering, and computer program for Haystack radar mappin
Hybrid receiver study
The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions
Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914
On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal
Reports to the President
A compilation of annual reports including a report from the President of the Massachusetts Institute of Technology, as well as reports from the academic and administrative units of the Institute. The reports outline the year's goals, accomplishments, honors and awards, and future plans
Project OASIS: The Design of a Signal Detector for the Search for Extraterrestrial Intelligence
An 8 million channel spectrum analyzer (MCSA) was designed the meet to meet the needs of a SETI program. The MCSA puts out a very large data base at very high rates. The development of a device which follows the MCSA, is presented
FMCW Signals for Radar Imaging and Channel Sounding
A linear / stepped frequency modulated continuous wave (FMCW) signal has for a long time been used in radar and channel sounding. A novel FMCW waveform known as “Gated FMCW” signal is proposed in this thesis for the suppression of strong undesired signals in microwave radar applications, such as: through-the-wall, ground penetrating, and medical imaging radar. In these applications the crosstalk signal between antennas and the reflections form the early interface (wall, ground surface, or skin respectively) are much stronger in magnitude compared to the backscattered signal from the target. Consequently, if not suppressed they overshadow the target’s return making detection a difficult task. Moreover, these strong unwanted reflections limit the radar’s dynamic range and might saturate or block the receiver causing the reflection from actual targets (especially targets with low radar cross section) to appear as noise. The effectiveness of the proposed waveform as a suppression technique was investigated in various radar scenarios, through numerical simulations and experiments. Comparisons of the radar images obtained for the radar system operating with the standard linear FMCW signal and with the proposed Gated FMCW waveform are also made.
In addition to the radar work the application of FMCW signals to radio propagation measurements and channel characterisation in the 60 GHz and 2-6 GHz frequency bands in indoor and outdoor environments is described. The data are used to predict the bit error rate performance of the in-house built measurement based channel simulator and the results are compared with the theoretical multipath channel simulator available in Matlab
- …
