5 research outputs found

    SystemC Model of Hierarchical Network-on-Chip for System-Level On-Chip Multi-Core Platform

    Get PDF
    System-Level Modeling is one of the key tools to speed up the process of design space exploration. Open source system level design tool is the solution for SMEs to get maximum benefit out of system level modeling in affordable range. SystemC is a C++ library extension that is used for open source system level modeling. In this thesis, a NoC based on hierarchical NoC for Ninesilica is modeled using SystemC. The Ninesilica multi-core platform that is developed at Department of Computer System in Tampere University of Technology. The system level NoC model is able to simulate the communication network with several number of nodes and data packets. The modeled NoC is able to give useful information regarding to delay, data packet buffering and number of clock cycles required to transfer all the data packets. The user can also be able to get information about the position of any data packet at any clock cycle in the network. The behavior of the communication network is analyzed with different number of nodes and several network configurations. The data load is also varied in order to verify that the NoC model is working properly. The NoC model successfully completed all the tests and gives the results as expected. The NoC model is able to buffer, transmit, and receive data packets without any loss of data packets. The NoC model can be configured and re-configured. The simulation results are written to a text file. Several comparisons between different network topologies with variable data load is also made and some conclusions based on those results are made. /Kir1

    Entwurfsmethodologie für höchst zuverlässige digitale ASIC-Designs angewandt auf Network-Centric System Middleware Switch Prozessor

    Get PDF
    The sensitivity of application-specific integrated circuits (ASICs) to single event effects (SEE) can lead to failures of subsystems which are exposed to increased radiation levels in space and on the ground. The work described in this thesis presents a design methodology for a fully fault-tolerant ASIC that is immune to single event upset effects (SEU) in sequential logic, single event transient effects (SET) in combinatorial logic, and single event latchup effects (SEL). Redundant circuits combined with SEL power switches (SPS) are the basis for a design methodology which achieves this goal. Within the standard ASIC design flow enhancements were made in order to incorporate redundancy and SPS cells and, consequently, enable protection against SEU, SET, and SEL. In order to validate the resulting fault-tolerant circuits a fault-injection environment with carefully designed fault models was developed. The moments of fault occurrence and their durations are modeled according to the real effects in actual hardware. The proposed design methodology was applied to an innovative space craft area network (SCAN) central processor unit, known as middleware switch processor. The measurement results presented in this thesis prove the correct functionality of DMR and SPS circuits, as well as the high fault-tolerance of the implemented ASICs along with moderate overhead with respect to power consumption and occupied silicon area. Irradiation measurements demonstrated the correct design and successful implementation of the SPS cell.Die Empfindlichkeit von anwendungsspezifischen integrierten Schaltungen (ASICs) zu den einzelnen Ereigniseffekten (SEE), kann zu Ausfällen von Subsystemen führen, die erhöhten Strahlungspegeln im Raum und auf dem Boden ausgesetzt werden. Die Arbeit, die in dieser Thesis beschrieben wird, stellt eine Entwurfsmethodologie vor um fehlertolerante ASICs zu entwerfen, welche die immun gegen singuläre Störung Effekte (SEU) in sequentielle Logik ist, einzelne Ereignis vorübergehende Effekte (SET) in der kombinatorischen Logik und einzelnes Ereignis Latchup-Effekte (SEL). Modulare Redundanz und SEL-Schalter (SPS) sind die Basis für eine Design-Methodik, die volle fehlertolerante ASIC liefert. Der Standard ASIC-Designflow ist erweitert worden, um Redundanz mit SPS-Schalter zu enthalten und Schutz gegen SEU, SET und SEL zu ermöglichen. Um die fehlertoleranten Stromkreise zu validieren ist eine Fault-Injektion Umgebung mit Fault Modellen entwickelt worden. Die Momente des Auftretens und der Dauer der injizierten Fehler werden entsprechend den realen Effekten in die Hardware modelliert. Die Methodologie des vorgeschlagenen Entwurfs ist an einem innovativen Space Craft Area Network (SCAN) Schaltkreis angewendet worden, bekannt als Middleware Switch Prozessor. Die Messergebnisse, die in dieser These dargestellt werden, haben die korrekte Funktionalität von Redundanz- und SPS-Stromkreisen sowie die hohe Fehler-Toleranz der resultierende ASICs zusammen mit mäßigen Unkosten in Bezug auf Leistungsaufnahme und besetzten Silikonfläche nachgewiesen. Die Strahlungsmessungen haben das korrekte Design und die erfolgreiche Umsetzung der SPS-Zelle bewiesen

    1999-2001 Catalog

    Get PDF
    corecore