1,914,240 research outputs found

    ワルラス均衡, リンダール均衡およびコア

    Get PDF

    Colloidal Gels: Equilibrium and Non-Equilibrium Routes

    Get PDF
    We attempt a classification of different colloidal gels based on colloid-colloid interactions. We discriminate primarily between non-equilibrium and equilibrium routes to gelation, the former case being slaved to thermodynamic phase separation while the latter is individuated in the framework of competing interactions and of patchy colloids. Emphasis is put on recent numerical simulations of colloidal gelation and their connection to experiments. Finally we underline typical signatures of different gel types, to be looked in more details in experiments.Comment: topical review, accepted in J. Phys. Condens. Matte

    Equilibrium relationships for non-equilibrium chemical dependencies

    Full text link
    In contrast to common opinion, it is shown that equilibrium constants determine the time-dependent behavior of particular ratios of concentrations for any system of reversible first-order reactions. Indeed, some special ratios actually coincide with the equilibrium constant at any moment in time. This is established for batch reactors, and similar relations hold for steady-state plug-flow reactors, replacing astronomic time by residence time. Such relationships can be termed time invariants of chemical kinetics

    Reflective Equilibrium

    Get PDF
    This article examines the method of reflective equilibrium (RE) and its role in philosophical inquiry. It begins with an overview of RE before discussing some of the subtleties involved in its interpretation, including challenges to the standard assumption that RE is a form of coherentism. It then evaluates some of the main objections to RE, in particular, the criticism that this method generates unreasonable beliefs. It concludes by considering how RE relates to recent debates about the role of intuitions in philosophy

    Valuation equilibrium

    Get PDF
    We introduce a new solution concept for games in extensive form with perfect information, valuation equilibrium, which is based on a partition of each player's moves into similarity classes. A valuation of a player'is a real-valued function on the set of her similarity classes. In this equilibrium each player's strategy is optimal in the sense that at each of her nodes, a player chooses a move that belongs to a class with maximum valuation. The valuation of each player is consistent with the strategy profile in the sense that the valuation of a similarity class is the player's expected payoff, given that the path (induced by the strategy profile) intersects the similarity class. The solution concept is applied to decision problems and multi-player extensive form games. It is contrasted with existing solution concepts. The valuation approach is next applied to stopping games, in which non-terminal moves form a single similarity class, and we note that the behaviors obtained echo some biases observed experimentally. Finally, we tentatively suggest a way of endogenizing the similarity partitions in which moves are categorized according to how well they perform relative to the expected equilibrium value, interpreted as the aspiration level

    Equilibrium onions?

    Get PDF
    We demonstrate the possibility of a stable equilibrium multi-lamellar ("onion") phase in pure lamellar systems (no excess solvent) due to a sufficiently negative Gaussian curvature modulus. The onion phase is stabilized by non-linear elastic moduli coupled to a polydisperse size distribution (Apollonian packing) to allow space-filling without appreciable elastic distortion. This model is compared to experiments on copolymer-decorated lamellar surfactant systems, with reasonable qualitative agreement

    Non-equilibrium transport response from equilibrium transport theory

    Get PDF
    We propose a simple scheme that describes accurately essential non-equilibrium effects in nanoscale electronics devices using equilibrium transport theory. The scheme, which is based on the alignment and dealignment of the junction molecular orbitals with the shifted Fermi levels of the electrodes, simplifies drastically the calculation of current-voltage characteristics compared to typical non-equilibrium algorithms. We probe that the scheme captures a number of non-trivial transport phenomena such as the negative differential resistance and rectification effects. It applies to those atomic-scale junctions whose relevant states for transport are spatially placed on the contact atoms or near the electrodes.Comment: 5 pages, 4 figures. Accepted in Physical Review
    corecore