16 research outputs found

    脳波信号解析に注目したノイズ除去、特徴抽出、実験観測応用を最適化する数理基盤に関する研究

    Get PDF
    Electroencephalography (EEG) data inevitably contains a large amount of noise particularly from ocular potentials in tasks with eye-movements and eye-blink, known as electrooculography (EOG) artifact, which has been a crucial issue in the braincomputer- interface (BCI) study. The eye-movements and eye-blinks have different time-frequency properties mixing together in EEGs of interest. This time-frequency characteristic has been substantially dealt with past proposed denoising algorithms relying on the consistent assumption based on the single noise component model. However, the traditional model is not simply applicable for biomedical signals consist of multiple signal components, such as weak EEG signals easily recognized as a noise because of the signal amplitude with respect to the EOG signal. In consideration of the realistic signal contamination, we newly designed the EEG-EOG signal contamination model for quantitative validations of the artifact removal from EEGs, and then proposed the two-stage wavelet shrinkage method with the undecimated wavelet decomposition (UDWT), which is suitable for the signal structure. The features of EEG-EOG signal has been extracted with existing decomposition methods known as Principal Component Analysis (PCA), Independent Component Analysis (ICA) based on a consistent assumption of the orthogonality of signal vectors or statistical independence of signal components. In the viewpoint of the signal morphology such as spiking, waves and signal pattern transitions, A systematic decomposition method is proposed to identify the type of signal components or morphology on the basis of sparsity in time-frequency domain. Morphological Component Analysis (MCA) is extended the traditional concept of signal decomposition including Fourier and wavelet transforms and provided a way of reconstruction that guarantees accuracy in reconstruction by using multiple bases being independent of each other and uniqueness representation, called the concept of “dictionary”. MCA is applied to decompose the real EEG signal and clarified the best combination of dictionaries for the purpose. In this proposed semi-realistic biological signal analysis, target EEG data was prepared as mixture signals of artificial eye movements and blinks and iEEG recorded from electrodes embedded into the brain intracranially and then those signals were successfully decomposed into original types by a linear expansion of waveforms such as redundant transforms: UDWT, DCT,LDCT, DST and DIRAC. The result demonstrated that the most suitable combination for EEG data analysis was UDWT, DST and DIRAC to represent the baseline envelop, multi frequency wave forms and spiking activities individually as representative types of EEG morphologies. MCA proposed method is used in negative-going Bereitschaftspotential (BP). It is associated with the preparation and execution of voluntary movement. Thus far, the BP for simple movements involving either the upper or lower body segment has been studied. However, the BP has not yet been recorded during sit-to-stand movements, which use the upper and lower body segments. Electroencephalograms were recorded during movement. To detect the movement of the upper body segment, a gyro sensor was placed on the back, and to detect the movement of the lower body segment, an electromyogram (EMG) electrode was placed on the surface of the hamstrings and quadriceps. Our study revealed that a negative-going BP was evoked around -3 to -2 seconds before the onset of the upper body movement in the sit-to-stand movement in response to the start cue. The BP had a negative peak before the onset of the movement. The potential was followed by premotor positivity, a motor-related potential, and a reafferent potential. The BP for the sit-to-stand movement had a steeper negative slope (-0.8 to -0.001 seconds) just before the onset of the upper body movement. The slope correlated with the gyro peak and the max amplitude of hamstrings EMG. A BP negative peak value was correlated with the max amplitude of the hamstring EMG. These results suggested that the observed BP is involved in the preparation/execution for a sit-to-stand movement using the upper and lower body. In summary, this thesis is help to pave the practical approach of real time analysis of desired EEG signal of interest toward the implementation of rehabilitation device which may be used for motor disabled people. We also pointed out the EEG-EOG contamination model that helps in removal of the artifacts and explicit dictionaries are representing the EEG morphologies.九州工業大学博士学位論文 学位記番号:生工博甲第290号 学位授与年月日:平成29年3月24日1 Introduction|2 Research Background and Preliminaries|3 Introduction of Morphological Component Analysis|4 Two-Stage Undecimated Wavelet Shrinkage Method|5 Morphologically Decomposition of EEG Signals|6 Bereitschaftspotential for Rise to Stand-Up Behavior九州工業大学平成28年

    Real time depth of anaesthesia monitoring through electroencephalogram (EEG) signal analysis based on Bayesian method and analytical technique

    Get PDF
    The electroencephalogram (EEG) signal from the brain is used for analysing brain abnormality, diseases, and monitoring patient conditions during surgery. One of the applications of the EEG signals analysis is real-time anaesthesia monitoring, as the anaesthetic drugs normally targeted the central nervous system. Depth of anaesthesia has been clinically assessed through breathing pattern, heart rate, arterial blood pressure, pupil dilation, sweating and the presence of movement. Those assessments are useful but are an indirect-measurement of anaesthetic drug effects. A direct method of assessment is through EEG signals because most anaesthetic drugs affect neuronal activity and cause a changed pattern in EEG signals. The aim of this research is to improve real-time anaesthesia assessment through EEG signal analysis which includes the filtering process, EEG features extraction and signal analysis for depth of anaesthesia assessment. The first phase of the research is EEG signal acquisition. When EEG signal is recorded, noises are also recorded along with the brain waves. Therefore, the filtering is necessary for EEG signal analysis. The filtering method introduced in this dissertation is Bayesian adaptive least mean square (LMS) filter which applies the Bayesian based method to find the best filter weight step for filter adaptation. The results show that the filtering technique is able to remove the unwanted signals from the EEG signals. This dissertation proposed three methods for EEG signal features extraction and analysing. The first is the strong analytical signal analysis which is based on the Hilbert transform for EEG signal features' extraction and analysis. The second is to extract EEG signal features using the Bayesian spike accumulation technique. The third is to apply the robust Bayesian Student-t distribution for real-time anaesthesia assessment. Computational results from the three methods are analysed and compared with the recorded BIS index which is the most popular and widely accepted depth of anaesthesia monitor. The outcomes show that computation times from the three methods are leading the BIS index approximately 18-120 seconds. Furthermore, the responses to anaesthetic drugs are verified with the anaesthetist's documentation and then compared with the BIS index to evaluate the performance. The results indicate that the three methods are able to extract EEG signal features efficiently, improve computation time, and respond faster to anaesthetic drugs compared to the existing BIS index

    Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation

    Get PDF
    Sleep specialists often conduct manual sleep stage scoring by visually inspecting the patient’s neurophysiological signals collected at sleep labs. This is, generally, a very difficult, tedious and time-consuming task. The limitations of manual sleep stage scoring have escalated the demand for developing Automatic Sleep Stage Classification (ASSC) systems. Sleep stage classification refers to identifying the various stages of sleep and is a critical step in an effort to assist physicians in the diagnosis and treatment of related sleep disorders. The aim of this paper is to survey the progress and challenges in various existing Electroencephalogram (EEG) signal-based methods used for sleep stage identification at each phase; including pre-processing, feature extraction and classification; in an attempt to find the research gaps and possibly introduce a reasonable solution. Many of the prior and current related studies use multiple EEG channels, and are based on 30 s or 20 s epoch lengths which affect the feasibility and speed of ASSC for real-time applications. Thus, in this paper, we also present a novel and efficient technique that can be implemented in an embedded hardware device to identify sleep stages using new statistical features applied to 10 s epochs of single-channel EEG signals. In this study, the PhysioNet Sleep European Data Format (EDF) Database was used. The proposed methodology achieves an average classification sensitivity, specificity and accuracy of 89.06%, 98.61% and 93.13%, respectively, when the decision tree classifier is applied. Finally, our new method is compared with those in recently published studies, which reiterates the high classification accuracy performance.https://doi.org/10.3390/e1809027

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others

    Applications of Blind Source Separation to the Magnetoencephalogram Background Activity in Alzheimer’s Disease

    Get PDF
    En esta Tesis Doctoral se ha analizado actividad basal de magnetoencefalograma (MEG) de 36 pacientes con la Enfermedad de Alzheimer (Alzheimer’s Disease, AD) y 26 sujetos de control de edad avanzada con técnicas de separación ciega de fuentes (Blind Source Separation, BSS). El objetivo era aplicar los métodos de BSS para ayudar en el análisis e interpretación de este tipo de actividad cerebral, prestando especial atención a la AD. El término BSS denota un conjunto de técnicas útiles para descomponer registros multicanal en las componentes que los dieron lugar. Cuatro diferentes aplicaciones han sido desarrolladas. Los resultados de esta Tesis Doctoral sugieren la utilidad de la BSS para ayudar en el procesado de la actividad basal de MEG y para identificar y caracterizar la AD.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemátic

    Fear Classification using Affective Computing with Physiological Information and Smart-Wearables

    Get PDF
    Mención Internacional en el título de doctorAmong the 17 Sustainable Development Goals proposed within the 2030 Agenda and adopted by all of the United Nations member states, the fifth SDG is a call for action to effectively turn gender equality into a fundamental human right and an essential foundation for a better world. It includes the eradication of all types of violence against women. Focusing on the technological perspective, the range of available solutions intended to prevent this social problem is very limited. Moreover, most of the solutions are based on a panic button approach, leaving aside the usage and integration of current state-of-the-art technologies, such as the Internet of Things (IoT), affective computing, cyber-physical systems, and smart-sensors. Thus, the main purpose of this research is to provide new insight into the design and development of tools to prevent and combat Gender-based Violence risky situations and, even, aggressions, from a technological perspective, but without leaving aside the different sociological considerations directly related to the problem. To achieve such an objective, we rely on the application of affective computing from a realist point of view, i.e. targeting the generation of systems and tools capable of being implemented and used nowadays or within an achievable time-frame. This pragmatic vision is channelled through: 1) an exhaustive study of the existing technological tools and mechanisms oriented to the fight Gender-based Violence, 2) the proposal of a new smart-wearable system intended to deal with some of the current technological encountered limitations, 3) a novel fear-related emotion classification approach to disentangle the relation between emotions and physiology, and 4) the definition and release of a new multi-modal dataset for emotion recognition in women. Firstly, different fear classification systems using a reduced set of physiological signals are explored and designed. This is done by employing open datasets together with the combination of time, frequency and non-linear domain techniques. This design process is encompassed by trade-offs between both physiological considerations and embedded capabilities. The latter is of paramount importance due to the edge-computing focus of this research. Two results are highlighted in this first task, the designed fear classification system that employed the DEAP dataset data and achieved an AUC of 81.60% and a Gmean of 81.55% on average for a subjectindependent approach, and only two physiological signals; and the designed fear classification system that employed the MAHNOB dataset data achieving an AUC of 86.00% and a Gmean of 73.78% on average for a subject-independent approach, only three physiological signals, and a Leave-One-Subject-Out configuration. A detailed comparison with other emotion recognition systems proposed in the literature is presented, which proves that the obtained metrics are in line with the state-ofthe- art. Secondly, Bindi is presented. This is an end-to-end autonomous multimodal system leveraging affective IoT throughout auditory and physiological commercial off-theshelf smart-sensors, hierarchical multisensorial fusion, and secured server architecture to combat Gender-based Violence by automatically detecting risky situations based on a multimodal intelligence engine and then triggering a protection protocol. Specifically, this research is focused onto the hardware and software design of one of the two edge-computing devices within Bindi. This is a bracelet integrating three physiological sensors, actuators, power monitoring integrated chips, and a System- On-Chip with wireless capabilities. Within this context, different embedded design space explorations are presented: embedded filtering evaluation, online physiological signal quality assessment, feature extraction, and power consumption analysis. The reported results in all these processes are successfully validated and, for some of them, even compared against physiological standard measurement equipment. Amongst the different obtained results regarding the embedded design and implementation within the bracelet of Bindi, it should be highlighted that its low power consumption provides a battery life to be approximately 40 hours when using a 500 mAh battery. Finally, the particularities of our use case and the scarcity of open multimodal datasets dealing with emotional immersive technology, labelling methodology considering the gender perspective, balanced stimuli distribution regarding the target emotions, and recovery processes based on the physiological signals of the volunteers to quantify and isolate the emotional activation between stimuli, led us to the definition and elaboration of Women and Emotion Multi-modal Affective Computing (WEMAC) dataset. This is a multimodal dataset in which 104 women who never experienced Gender-based Violence that performed different emotion-related stimuli visualisations in a laboratory environment. The previous fear binary classification systems were improved and applied to this novel multimodal dataset. For instance, the proposed multimodal fear recognition system using this dataset reports up to 60.20% and 67.59% for ACC and F1-score, respectively. These values represent a competitive result in comparison with the state-of-the-art that deal with similar multi-modal use cases. In general, this PhD thesis has opened a new research line within the research group under which it has been developed. Moreover, this work has established a solid base from which to expand knowledge and continue research targeting the generation of both mechanisms to help vulnerable groups and socially oriented technology.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: David Atienza Alonso.- Secretaria: Susana Patón Álvarez.- Vocal: Eduardo de la Torre Arnan
    corecore