777 research outputs found

    EEG Artifact Removal Using a Wavelet Neural Network

    Get PDF
    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data

    Artifact Removal Methods in EEG Recordings: A Review

    Get PDF
    To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods

    Hand (Motor) Movement Imagery Classification of EEG Using Takagi-Sugeno-Kang Fuzzy-Inference Neural Network

    Get PDF
    Approximately 20 million people in the United States suffer from irreversible nerve damage and would benefit from a neuroprosthetic device modulated by a Brain-Computer Interface (BCI). These devices restore independence by replacing peripheral nervous system functions such as peripheral control. Although there are currently devices under investigation, contemporary methods fail to offer adaptability and proper signal recognition for output devices. Human anatomical differences prevent the use of a fixed model system from providing consistent classification performance among various subjects. Furthermore, notoriously noisy signals such as Electroencephalography (EEG) require complex measures for signal detection. Therefore, there remains a tremendous need to explore and improve new algorithms. This report investigates a signal-processing model that is better suited for BCI applications because it incorporates machine learning and fuzzy logic. Whereas traditional machine learning techniques utilize precise functions to map the input into the feature space, fuzzy-neuro system apply imprecise membership functions to account for uncertainty and can be updated via supervised learning. Thus, this method is better equipped to tolerate uncertainty and improve performance over time. Moreover, a variation of this algorithm used in this study has a higher convergence speed. The proposed two-stage signal-processing model consists of feature extraction and feature translation, with an emphasis on the latter. The feature extraction phase includes Blind Source Separation (BSS) and the Discrete Wavelet Transform (DWT), and the feature translation stage includes the Takagi-Sugeno-Kang Fuzzy-Neural Network (TSKFNN). Performance of the proposed model corresponds to an average classification accuracy of 79.4 % for 40 subjects, which is higher than the standard literature values, 75%, making this a superior model

    Analysis of Small Muscle Movement Effects on EEG Signals

    Get PDF
    In this thesis, the artefactual effects of the small muscle movements were investigated. Upper frequency bands (30 Hz) of the EEG signal were extracted in order to investigate the artefactual effects of the small muscle movements. When the contamination level is high, the detection of the small muscle artifact can be made with the 92.2% accuracy. If these artifacts are really small such as a single finger movement, the detection accuracy decreases to 64%. But, the detection accuracy increases to 72% after removing the eye blink artifacts. The results of the classification support our hypothesis about the artefactual effects of the small muscle movements

    DEVELOPMENT OF AN ACCURATE SEIZURE DETECTION SYSTEM USING RANDOM FOREST CLASSIFIER WITH ICA BASED ARTIFACT REMOVAL ON EEG DATA

    Get PDF
    Abstract The creation of a reliable artifact removal and precise epileptic seizure identification system using Seina Scalp EEG data and cutting-edge machine learning techniques is presented in this paper. Random Forest classifier used for seizure classification, and independent component analysis (ICA) is used for artifact removal. Various artifacts, such as eye blinks, muscular activity, and environmental noise, are successfully recognized and removed from the EEG signals using ICA-based artifact removal, increasing the accuracy of the analysis that comes after. A precise distinction between seizure and non-seizure segments is made possible by the Random Forest Classifier, which was created expressly to capture the spatial and temporal patterns associated with epileptic seizures. Experimental evaluation of the Seina Scalp EEG Data demonstrates the excellent accuracy of our approach, achieving a 96% seizure identification rate A potential strategy for improving the accuracy and clinical utility of EEG-based epilepsy diagnosis is the merging of modern signal processing methods and deep learning algorithms

    A hybrid unsupervised approach toward EEG epileptic spikes detection

    Get PDF
    Epileptic spikes are complementary sources of information in EEG to diagnose and localize the origin of epilepsy. However, not only is visual inspection of EEG labor intensive, time consuming, and prone to human error, but it also needs long-term training to acquire the level of skill required for identifying epileptic discharges. Therefore, computer-aided approaches were employed for the purpose of saving time and increasing the detection and source localization accuracy. One of the most important artifacts that may be confused as an epileptic spike, due to morphological resemblance, is eye blink. Only a few studies consider removal of this artifact prior to detection, and most of them used either visual inspection or computer-aided approaches, which need expert supervision. Consequently, in this paper, an unsupervised and EEG-based system with embedded eye blink artifact remover is developed to detect epileptic spikes. The proposed system includes three stages: eye blink artifact removal, feature extraction, and classification. Wavelet transform was employed for both artifact removal and feature extraction steps, and adaptive neuro-fuzzy inference system for classification purpose. The proposed method is verified using a publicly available EEG dataset. The results show the efficiency of this algorithm in detecting epileptic spikes using low-resolution EEG with least computational complexity, highest sensitivity, and lesser human interaction compared to similar studies. Moreover, since epileptic spike detection is a vital component of epilepsy source localization, therefore this algorithm can be utilized for EEG-based pre-surgical evaluation of epilepsy

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity
    • …
    corecore