134 research outputs found

    Classification of EMG signals to control a prosthetic hand using time-frequesncy representations and Support Vector Machines

    Get PDF
    Myoelectric signals (MES) are viable control signals for externally-powered prosthetic devices. They may improve both the functionality and the cosmetic appearance of these devices. Conventional controllers, based on the signal\u27s amplitude features in the control strategy, lack a large number of controllable states because signals from independent muscles are required for each degree of freedom (DoF) of the device. Myoelectric pattern recognition systems can overcome this problem by discriminating different residual muscle movements instead of contraction levels of individual muscles. However, the lack of long-term robustness in these systems and the design of counter-intuitive control/command interfaces have resulted in low clinical acceptance levels. As a result, the development of robust, easy to use myoelectric pattern recognition-based control systems is the main challenge in the field of prosthetic control. This dissertation addresses the need to improve the controller\u27s robustness by designing a pattern recognition-based control system that classifies the user\u27s intention to actuate the prosthesis. This system is part of a cost-effective prosthetic hand prototype developed to achieve an acceptable level of functional dexterity using a simple to use interface. A Support Vector Machine (SVM) classifier implemented as a directed acyclic graph (DAG) was created. It used wavelet features from multiple surface EMG channels strategically placed over five forearm muscles. The classifiers were evaluated across seven subjects. They were able to discriminate five wrist motions with an accuracy of 91.5%. Variations of electrode locations were artificially introduced at each recording session as part of the procedure, to obtain data that accounted for the changes in the user\u27s muscle patterns over time. The generalization ability of the SVM was able to capture most of the variability in the data and to maintain an average classification accuracy of 90%. Two principal component analysis (PCA) frameworks were also evaluated to study the relationship between EMG recording sites and the need for feature space reduction. The dimension of the new feature set was reduced with the goal of improving the classification accuracy and reducing the computation time. The analysis indicated that the projection of the wavelet features into a reduced feature space did not significantly improve the accuracy and the computation time. However, decreasing the number of wavelet decomposition levels did lower the computational load without compromising the average signal classification accuracy. Based on the results of this work, a myoelectric pattern recognition-based control system that uses an SVM classifier applied to time-frequency features may be used to discriminate muscle contraction patterns for prosthetic applications

    Analyze the Human Movements to Help CNS to Shape the Synergy using CNMF and Pattern Recognition

    Full text link
    © 2017 The Authors. The Biomedical Signals have been studied for developing human control systems to improving the quality of life. The EMG signal is one of the main types of biomedical signals. It is a convoluted signal. This signal (EMG signal) controlled by the Central nervous system (CNS). It has been a long time expected that the human central nervous system (CNS) uses flexible combinations of some muscles synergy (MS) to solve and control redundant movements. Synergy muscles activities are different in a single muscle. In the concept of Synergy muscle, the CNS does not directly control the activation of a large number of muscles. There are two main movements can help CNS to shape the synergy. The automatic body response and the voluntary actions. These activities remain not too bright. Some studies support the hypothesis that the automatic body responses could be used as a reference to familiarize the voluntary efforts. It has been validating by analyzing the human voluntary movement and the automatic mechanical motions from the muscle synergy. Based on the validation, there was a proposition that the automatic synergy motion may express some features which could support the CNS to shape the voluntary synergy motion using the nonnegative matrix factorization (NMF). Thus the target of the presenting work is to analyses the human movements from the muscle synergy to help CNS shapes the synergy movement by suggestion using the concatenated non-negative matrix factorization (CNMF) method and the pattern recognition method. Then compare the two results and see if that help CNS to shape the synergy movements and which method has more accuracy

    Dimensionality Reduction for Classification of Object Weight from Electromyography

    Get PDF
    Electromyography (EMG) is a simple, non-invasive, and cost-effective technology for measuring muscle activity. However, multi-muscle EMG is also a noisy, complex, and high-dimensional signal. It has nevertheless been widely used in a host of human-machine-interface applications (electrical wheelchairs, virtual computer mice, prosthesis, robotic fingers, etc.) and, in particular, to measure the reach-and-grasp motions of the human hand. Here, we developed an automated pipeline to predict object weight in a reach-grasp-lift task from an open dataset, relying only on EMG data. In doing so, we shifted the focus from manual feature-engineering to automated feature-extraction by using pre-processed EMG signals and thus letting the algorithms select the features. We further compared intrinsic EMG features, derived from several dimensionality-reduction methods, and then ran several classification algorithms on these low-dimensional representations. We found that the Laplacian Eigenmap algorithm generally outperformed other dimensionality-reduction methods. What is more, optimal classification accuracy was achieved using a combination of Laplacian Eigenmaps (simple-minded) and k-Nearest Neighbors (88% F1 score for 3-way classification). Our results, using EMG alone, are comparable to other researchers’, who used EMG and EEG together, in the literature. A running-window analysis further suggests that our method captures information in the EMG signal quickly and remains stable throughout the time that subjects grasp and move the object

    Hybrid ACO and SVM algorithm for pattern classification

    Get PDF
    Ant Colony Optimization (ACO) is a metaheuristic algorithm that can be used to solve a variety of combinatorial optimization problems. A new direction for ACO is to optimize continuous and mixed (discrete and continuous) variables. Support Vector Machine (SVM) is a pattern classification approach originated from statistical approaches. However, SVM suffers two main problems which include feature subset selection and parameter tuning. Most approaches related to tuning SVM parameters discretize the continuous value of the parameters which will give a negative effect on the classification performance. This study presents four algorithms for tuning the SVM parameters and selecting feature subset which improved SVM classification accuracy with smaller size of feature subset. This is achieved by performing the SVM parameters’ tuning and feature subset selection processes simultaneously. Hybridization algorithms between ACO and SVM techniques were proposed. The first two algorithms, ACOR-SVM and IACOR-SVM, tune the SVM parameters while the second two algorithms, ACOMV-R-SVM and IACOMV-R-SVM, tune the SVM parameters and select the feature subset simultaneously. Ten benchmark datasets from University of California, Irvine, were used in the experiments to validate the performance of the proposed algorithms. Experimental results obtained from the proposed algorithms are better when compared with other approaches in terms of classification accuracy and size of the feature subset. The average classification accuracies for the ACOR-SVM, IACOR-SVM, ACOMV-R and IACOMV-R algorithms are 94.73%, 95.86%, 97.37% and 98.1% respectively. The average size of feature subset is eight for the ACOR-SVM and IACOR-SVM algorithms and four for the ACOMV-R and IACOMV-R algorithms. This study contributes to a new direction for ACO that can deal with continuous and mixed-variable ACO

    Navigating features: A topologically informed chart of electromyographic features space

    Full text link
    The success of biological signal pattern recognition depends crucially on the selection of relevant features. Across signal and imaging modalities, a large number of features have been proposed, leading to feature redundancy and the need for optimal feature set identification. A further complication is that, due to the inherent biological variability, even the same classification problem on different datasets can display variations in the respective optimal sets, casting doubts on the generalizability of relevant features. Here, we approach this problem by leveraging topological tools to create charts of features spaces. These charts highlight feature sub-groups that encode similar information (and their respective similarities) allowing for a principled and interpretable choice of features for classification and analysis. Using multiple electromyographic (EMG) datasets as a case study, we use this feature chart to identify functional groups among 58 state-of-the-art EMG features, and to show that they generalize across three different forearm EMG datasets obtained from able-bodied subjects during hand and finger contractions. We find that these groups describe meaningful non-redundant information, succinctly recapitulating information about different regions of feature space. We then recommend representative features from each group based on maximum class separability, robustness and minimum complexity
    • …
    corecore