80 research outputs found

    Intelligent upper-limb exoskeleton using deep learning to predict human intention for sensory-feedback augmentation

    Full text link
    The age and stroke-associated decline in musculoskeletal strength degrades the ability to perform daily human tasks using the upper extremities. Although there are a few examples of exoskeletons, they need manual operations due to the absence of sensor feedback and no intention prediction of movements. Here, we introduce an intelligent upper-limb exoskeleton system that uses cloud-based deep learning to predict human intention for strength augmentation. The embedded soft wearable sensors provide sensory feedback by collecting real-time muscle signals, which are simultaneously computed to determine the user's intended movement. The cloud-based deep-learning predicts four upper-limb joint motions with an average accuracy of 96.2% at a 200-250 millisecond response rate, suggesting that the exoskeleton operates just by human intention. In addition, an array of soft pneumatics assists the intended movements by providing 897 newton of force and 78.7 millimeter of displacement at maximum. Collectively, the intent-driven exoskeleton can augment human strength by 5.15 times on average compared to the unassisted exoskeleton. This report demonstrates an exoskeleton robot that augments the upper-limb joint movements by human intention based on a machine-learning cloud computing and sensory feedback.Comment: 15 pages, 6 figures, 1 table, Submitted for possible publicatio

    Physiological and kinematic effects of a soft exosuit on arm movements

    Get PDF
    Background: Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement. Methods: We present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer. Eight healthy subjects wore the exosuit and performed elbow movements in two conditions: with assistance from the device (powered) and without assistance (unpowered). The test included a dynamic task, to evaluate the impact of the assistance on the kinematics and dynamics of human movement, and an isometric task, to assess its influence on the onset of muscular fatigue. Results: Powered movements showed a low but significant degradation in accuracy and smoothness when compared to the unpowered ones. The degradation in kinematics was accompanied by an average reduction of 59.20±5.58% (mean ± standard error) of the biological torque and 64.8±7.66% drop in muscular effort when the exosuit assisted its wearer. Furthermore, an analysis of the electromyographic signals of the biceps brachii during the isometric task revealed that the exosuit delays the onset of muscular fatigue. Conclusions: The study examined the effects of an exosuit on the characteristics of human movements. The suit supports most of the power needed to move and reduces the effort that the subject needs to exert to counteract gravity in a static posture, delaying the onset of muscular fatigue. We interpret the decline in kinematic performance as a technical limitation of the current device. This work suggests that a powered exosuit can be a good candidate for industrial and clinical applications, where task efficiency and hardware transparency are paramount

    Design and development of the sEMG-based exoskeleton strength enhancer for the legs

    Get PDF
    This paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The Computer Aided Design (CAD) model of the exoskeleton is designed,3D printed with respect to the golden ratio of human anthropometry, and tested structurally. The exoskeleton control system is designed on the LabVIEW National Instrument platform and embedded in myRIO. Surface EMG sensors (sEMG) and flex sensors are usedcoherently to create different state filters for the EMG, human body posture and control for the mechanical exoskeleton actuation. The myRIO is used to process sEMG signals and send control signals to the exoskeleton. Thus,the complete exoskeleton system consists of sEMG as primary sensor and flex sensor as a secondary sensor while the whole control system is designed in LabVIEW. FEA simulation and tests show that the exoskeleton is suitable for an average human weight of 62 kg plus excess force with different reactive spring forces. However, due to the mechanical properties of the exoskeleton actuator, it will require an additional liftto provide the rapid reactive impulse force needed to increase biomechanical movement such as squatting up. Finally, with the increasing availability of such assistive devices on the market, the important aspect of ethical, social and legal issues have also emerged and discussed in this paper

    Design and development of the sEMG-based exoskeleton strength enhancer for the legs

    Get PDF
    This paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The Computer Aided Design (CAD) model of the exoskeleton is designed,3D printed with respect to the golden ratio of human anthropometry, and tested structurally. The exoskeleton control system is designed on the LabVIEW National Instrument platform and embedded in myRIO. Surface EMG sensors (sEMG) and flex sensors are usedcoherently to create different state filters for the EMG, human body posture and control for the mechanical exoskeleton actuation. The myRIO is used to process sEMG signals and send control signals to the exoskeleton. Thus,the complete exoskeleton system consists of sEMG as primary sensor and flex sensor as a secondary sensor while the whole control system is designed in LabVIEW. FEA simulation and tests show that the exoskeleton is suitable for an average human weight of 62 kg plus excess force with different reactive spring forces. However, due to the mechanical properties of the exoskeleton actuator, it will require an additional liftto provide the rapid reactive impulse force needed to increase biomechanical movement such as squatting up. Finally, with the increasing availability of such assistive devices on the market, the important aspect of ethical, social and legal issues have also emerged and discussed in this paper

    Self-Powered Robots to Reduce Motor Slacking During Upper-Extremity Rehabilitation: A Proof of Concept Study

    Get PDF
    Background: Robotic rehabilitation is a highly promising approach to recover lost functions after stroke or other neurological disorders. Unfortunately, robotic rehabilitation currently suffers from motor slacking , a phenomenon in which the human motor system reduces muscle activation levels and movement excursions, ostensibly to minimize metabolic- and movement-related costs. Consequently, the patient remains passive and is not fully engaged during therapy. To overcome this limitation, we envision a new class of body-powered robots and hypothesize that motor slacking could be reduced if individuals must provide the power to move their impaired limbs via their own body (i.e., through the motion of a healthy limb). Objective: To test whether a body-powered exoskeleton (i.e. robot) could reduce motor slacking during robotic training. Methods: We developed a body-powered robot that mechanically coupled the motions of the user\u27s elbow joints. We tested this passive robot in two groups of subjects (stroke and able-bodied) during four exercise conditions in which we controlled whether the robotic device was powered by the subject or by the experimenter, and whether the subject\u27s driven arm was engaged or at rest. Motor slacking was quantified by computing the muscle activation changes of the elbow flexor and extensor muscles using surface electromyography. Results: Subjects had higher levels of muscle activation in their driven arm during self-powered conditions compared to externally-powered conditions. Most notably, subjects unintentionally activated their driven arm even when explicitly told to relax when the device was self-powered. This behavior was persistent throughout the trial and did not wane after the initiation of the trial. Conclusions: Our findings provide novel evidence indicating that motor slacking can be reduced by self-powered robots; thus demonstrating promise for rehabilitation of impaired subjects using this new class of wearable system. The results also serve as a foundation to develop more sophisticated body-powered robots (e.g., with controllable transmissions) for rehabilitation purposes

    Development of Digital Control Systems for Wearable Mechatronic Devices: Applications in Musculoskeletal Rehabilitation of the Upper Limb

    Get PDF
    The potential for wearable mechatronic systems to assist with musculoskeletal rehabilitation of the upper limb has grown with the technology. One limiting factor to realizing the benefits of these devices as motion therapy tools is within the development of digital control solutions. Despite many device prototypes and research efforts in the surrounding fields, there are a lack of requirements, details, assessments, and comparisons of control system characteristics, components, and architectures in the literature. Pairing this with the complexity of humans, the devices, and their interactions makes it a difficult task for control system developers to determine the best solution for their desired applications. The objective of this thesis is to develop, evaluate, and compare control system solutions that are capable of tracking motion through the control of wearable mechatronic devices. Due to the immaturity of these devices, the design, implementation, and testing processes for the control systems is not well established. In order to improve the efficiency and effectiveness of these processes, control system development and evaluation tools have been proposed. The Wearable Mechatronics-Enabled Control Software framework was developed to enable the implementation and comparison of different control software solutions presented in the literature. This framework reduces the amount of restructuring and modification required to complete these development tasks. An integration testing protocol was developed to isolate different aspects of the control systems during testing. A metric suite is proposed that expands on the existing literature and allows for the measurement of more control characteristics. Together, these tools were used ii ABSTRACT iii to developed, evaluate, and compare control system solutions. Using the developed control systems, a series of experiments were performed that involved tracking elbow motion using wearable mechatronic elbow devices. The accuracy and repeatability of the motion tracking performances, the adaptability of the control models, and the resource utilization of the digital systems were measured during these experiments. Statistical analysis was performed on these metrics to compare between experimental factors. The results of the tracking performances show some of the highest accuracies for elbow motion tracking with these devices. The statistical analysis revealed many factors that significantly impact the tracking performance, such as visual feedback, motion training, constrained motion, motion models, motion inputs, actuation components, and control outputs. Furthermore, the completion of the experiments resulted in three first-time studies, such as the comparison of muscle activation models and the quantification of control system task timing and data storage needs. The successes of these experiments highlight that accurate motion tracking, using biological signals of the user, is possible, but that many more efforts are needed to obtain control solutions that are robust to variations in the motion and characteristics of the user. To guide the future development of these control systems, a national survey was conducted of therapists regarding their patient data collection and analysis methods. From the results of this survey, a series of requirements for software systems, that allow therapists to interact with the control systems of these devices, were collected. Increasing the participation of therapists in the development processes of wearable assistive devices will help to produce better requirements for developers. This will allow the customization of control systems for specific therapies and patient characteristics, which will increase the benefit and adoption rate of these devices within musculoskeletal rehabilitation programs

    A New Soft Pneumatic Elbow Pad for Joint Assistance with Application to Smart Campus

    Get PDF

    Calibration of an EMG-Based Body Model with six Muscles to control a Leg Exoskeleton

    Full text link
    Abstract — This paper presents a body model of intermediate level of detail to allow prediction of the knee torque produced by thigh muscles based on EMG signals. This torque prediction is used as input for a torque controller that adapts the level of support offered to an operator by a powered leg orthosis. The level of detail of the body model is chosen in such a way, that all parameters of the model can be calibrated for a specific operator with only a few sensors that are mounted on the exoskeleton. I

    NOVEL ENERGY EFFICIENT ASSISTIVE DEVICE WITH INTUITIVE HUMAN-MACHINE INTERFACE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore