130 research outputs found

    Ingress of threshold voltage-triggered hardware trojan in the modern FPGA fabric–detection methodology and mitigation

    Get PDF
    The ageing phenomenon of negative bias temperature instability (NBTI) continues to challenge the dynamic thermal management of modern FPGAs. Increased transistor density leads to thermal accumulation and propagates higher and non-uniform temperature variations across the FPGA. This aggravates the impact of NBTI on key PMOS transistor parameters such as threshold voltage and drain current. Where it ages the transistors, with a successive reduction in FPGA lifetime and reliability, it also challenges its security. The ingress of threshold voltage-triggered hardware Trojan, a stealthy and malicious electronic circuit, in the modern FPGA, is one such potential threat that could exploit NBTI and severely affect its performance. The development of an effective and efficient countermeasure against it is, therefore, highly critical. Accordingly, we present a comprehensive FPGA security scheme, comprising novel elements of hardware Trojan infection, detection, and mitigation, to protect FPGA applications against the hardware Trojan. Built around the threat model of a naval warship’s integrated self-protection system (ISPS), we propose a threshold voltage-triggered hardware Trojan that operates in a threshold voltage region of 0.45V to 0.998V, consuming ultra-low power (10.5nW), and remaining stealthy with an area overhead as low as 1.5% for a 28 nm technology node. The hardware Trojan detection sub-scheme provides a unique lightweight threshold voltage-aware sensor with a detection sensitivity of 0.251mV/nA. With fixed and dynamic ring oscillator-based sensor segments, the precise measurement of frequency and delay variations in response to shifts in the threshold voltage of a PMOS transistor is also proposed. Finally, the FPGA security scheme is reinforced with an online transistor dynamic scaling (OTDS) to mitigate the impact of hardware Trojan through run-time tolerant circuitry capable of identifying critical gates with worst-case drain current degradation

    Electromagnetic Transmission of Intellectual Property Data to Protect FPGA Designs

    No full text
    International audienceOver the past 10 years, the designers of intellectual properties(IP) have faced increasing threats including cloning, counterfeiting, andreverse-engineering. This is now a critical issue for the microelectronicsindustry. The design of a secure, efficient, lightweight protection scheme fordesign data is a serious challenge for the hardware security community. In thiscontext, this chapter presents two ultra-lightweight transmitters using sidechannel leakage based on electromagnetic emanation to send embedded IPidentity discreetly and quickl

    Hardware Trojan Detection by Delay and Electromagnetic Measurements

    Get PDF
    International audience—Hardware Trojans (HT) inserted in integrated circuits have received special attention of researchers. In this paper, we present firstly a novel HT detection technique based on path delays measurements. A delay model, which considers intra-die process variations, is established for a net. Secondly, we show how to detect HT using ElectroMagnetic (EM) measurements. We study the HT detection probability according to its size taking into account the inter-die process variations with a set of FPGA. The results show, for instance, that there is a probability greater than 95% with a false negative rate of 5% to detect a HT larger than 1.7% of the original circuit. I. Introduction The trust and security of Integrated Circuits (IC) design and fabrication is critical for sensitive fields like finance, health, and governmental communications. Due to the complexity and the high cost of IC fabrication cycle, more and more firms outsource their production. This trend gives a possibility for an adversary to introduce malicious circuit, called Hardware Trojan horse (HT), in any IC. It can either perform a Denial Of Service (DOS), deteriorate circuit performance [8], or steal sensitive information. Therefore, the HTs are considered a real threat which has gained attention from researchers. HT can be inserted at any point during the design or fabrication process from Register Transfer Level (RTL) to layout and circuit fabrication. For example in [11], authors show some techniques to insert malicious circuitry at RTL level. These HTs, which are activated with a specific pattern inputs, can leak secret key via RS232 channels. The HT, unlike a software trojan, cannot be removed once it is fabricated. So, it is better to proactively prevent the insertion of a HT: few methods have been proposed. One seminal work is known as " private circuits II " [9]. This paper describes a proof-of-concept, too costly to be implemented. A more reasonable option has been recently proposed in [5]: it uses two codes to encode the state and mix it with encoded randomness, which allows to prevent an easy triggering and has a detection capability. Otherwise it is important to detect it before it becomes effective. Previous works classify detection methods into two wide categories: destructive and non-destructive. Invasive methods destroy the chip to reconstruct successfully the GDSII an

    An ultra-lightweight transmitter for contactless rapid identification of embedded IP in FPGA

    No full text
    International audienceThis letter presents the first ultra-lightweight transmitter based on electromagnetic emanation to send embedded intellectual properties (IP) identity (ID) quickly and discreetly. The proposed solution is based on a binary frequency shift keying (BFSK) transmitter that ensures an exceptionally high data rate. In addition, we present a coherent demodulation method using slippery window spectral analysis to recover data outside the device. The hardware resources occupied by the transmitter represent less than 0.022% of a 130 nm Microsemi Fusion FPGA. The experimental bitrate of the data transmission is around 500 times higher than the bitrate available for other state of the art spy circuitry using power consumption. In comparison with other works, our proposal goes clearly towards using a spy circuit in an industrial context for IP protection

    Trusted SoC Realization for Remote Dynamic IP Integration

    Get PDF
    Heutzutage bieten field-programmable gate arrays (FPGAs) enorme Rechenleistung und Flexibilität. Zudem sind sie oft auf einem einzigen Chip mit eingebetteten Multicore-Prozessoren, DSP-Engines und Speicher-Controllern integriert. Dadurch sind sie für große und komplexe Anwendungen geeignet. Gleichzeitig führten die Fortschritte auf dem Gebiet der High-Level-Synthese und die Verfügbarkeit standardisierter Schnittstellen (wie etwa das Advanced eXtensible Interface 4) zur Entwicklung spezialisierter und neuartiger Funktionalitäten durch Designhäuser. All dies schuf einen Bedarf für ein Outsourcing der Entwicklung oder die Lizenzierung von FPGA-IPs (Intellectual Property). Ein Pay-per-Use IP-Lizenzierungsmodell, bei dem diese IPs vor allen Marktteilnehmern geschützt sind, kommt den Entwicklern der IPs zugute. Außerdem handelt es sich bei den Entwicklern von FPGA-Systemen in der Regel um kleine bis mittlere Unternehmen, die in Bezug auf die Markteinführungszeit und die Kosten pro Einheit von einem solchen Lizenzierungsmodell profitieren können. Im akademischen Bereich und in der Industrie gibt es mehrere IP-Lizenzierungsmodelle und Schutzlösungen, die eingesetzt werden können, die jedoch mit zahlreichen Sicherheitsproblemen behaftet sind. In einigen Fällen verursachen die vorgeschlagenen Sicherheitsmaßnahmen einen unnötigen Ressourcenaufwand und Einschränkungen für die Systementwickler, d. h., sie können wesentliche Funktionen ihres Geräts nicht nutzen. Darüber hinaus lassen sie zwei funktionale Herausforderungen außer Acht: das Floorplanning der IP auf der programmierbaren Logik (PL) und die Generierung des Endprodukts der IP (Bitstream) unabhängig vom Gesamtdesign. In dieser Arbeit wird ein Pay-per-Use-Lizenzierungsschema vorgeschlagen und unter Verwendung eines security framework (SFW) realisiert, um all diese Herausforderungen anzugehen. Das vorgestellte Schema ist pragmatisch, weniger restriktiv für Systementwickler und bietet Sicherheit gegen IP-Diebstahl. Darüber hinaus werden Maßnahmen ergriffen, um das System vor einem IP zu schützen, das bösartige Schaltkreise enthält. Das „Secure Framework“ umfasst ein vertrauenswürdiges Betriebssystem, ein reichhaltiges Betriebssystem, mehrere unterstützende Komponenten (z. B. TrustZone- Logik, gegen Seitenkanalangriffe (SCA) resistente Entschlüsselungsschaltungen) und Softwarekomponenten, z. B. für die Bitstromanalyse. Ein Gerät, auf dem das SFW läuft, kann als vertrauenswürdiges Gerät betrachtet werden, das direkt mit einem Repository oder einem IP-Core-Entwickler kommunizieren kann, um IPs in verschlüsselter Form zu erwerben. Die Entschlüsselung und Authentifizierung des IPs erfolgt auf dem Gerät, was die Angriffsfläche verringert und es weniger anfällig für IP-Diebstahl macht. Außerdem werden Klartext-IPs in einem geschützten Speicher des vertrauenswürdigen Betriebssystems abgelegt. Das Klartext-IP wird dann analysiert und nur dann auf der programmierbaren Logik konfiguriert, wenn es authentisch ist und keine bösartigen Schaltungen enthält. Die Bitstrom-Analysefunktionalität und die SFW-Unterkomponenten ermöglichen die Partitionierung der PL-Ressourcen in sichere und unsichere Ressourcen, d. h. die Erweiterung desKonzepts der vertrauenswürdigen Ausführungsumgebung (TEE) auf die PL. Dies ist die erste Arbeit, die das TEE-Konzept auf die programmierbare Logik ausweitet. Bei der oben erwähnten SCA-resistenten Entschlüsselungsschaltung handelt es sich um die Implementierung des Advanced Encryption Standard, der so modifiziert wurde, dass er gegen elektromagnetische und stromverbrauchsbedingte Leckagen resistent ist. Das geschützte Design verfügt über zwei Gegenmaßnahmen, wobei die erste auf einer Vielzahl unterschiedler Implementierungsvarianten und veränderlichen Zielpositionen bei der Konfiguration basiert, während die zweite nur unterschiedliche Implementierungsvarianten verwendet. Diese Gegenmaßnahmen sind auch während der Laufzeit skalierbar. Bei der Bewertung werden auch die Auswirkungen der Skalierbarkeit auf den Flächenbedarf und die Sicherheitsstärke berücksichtigt. Darüber hinaus wird die zuvor erwähnte funktionale Herausforderung des IP Floorplanning durch den Vorschlag eines feinkörnigen Automatic Floorplanners angegangen, der auf gemischt-ganzzahliger linearer Programmierung basiert und aktuelle FPGAGenerationen mit größeren und komplexen Bausteine unterstützt. Der Floorplanner bildet eine Reihe von IPs auf dem FPGA ab, indem er präzise rekonfigurierbare Regionen schafft. Dadurch werden die verbleibenden verfügbaren Ressourcen für das Gesamtdesign maximiert. Die zweite funktionale Herausforderung besteht darin, dass die vorhandenen Tools keine native Funktionalität zur Erzeugung von IPs in einer eigenständigen Umgebung bieten. Diese Herausforderung wird durch den Vorschlag eines unabhängigen IP-Generierungsansatzes angegangen. Dieser Ansatz kann von den Marktteilnehmern verwendet werden, um IPs eines Entwurfs unabhängig vom Gesamtentwurf zu generieren, ohne die Kompatibilität der IPs mit dem Gesamtentwurf zu beeinträchtigen

    Silicon Echoes: Non-Invasive Trojan and Tamper Detection using Frequency-Selective Impedance Analysis

    Get PDF
    The threat of chip-level tampering and its detection has been widely researched. Hardware Trojan insertions are prominent examples of such tamper events. Altering the placement and routing of a design or removing a part of a circuit for side-channel leakage/fault sensitivity amplification are other instances of such attacks. While semi- and fully-invasive physical verification methods can confidently detect such stealthy tamper events, they are costly, time-consuming, and destructive. On the other hand, virtually all proposed non-invasive side-channel methods suffer from noise and, therefore, have low confidence. Moreover, they require activating the tampered part of the circuit (e.g., the Trojan trigger) to compare and detect the modifications. In this work, we introduce a non-invasive post-silicon tamper detection technique applicable to different classes of tamper events at the chip level without requiring the activation of the malicious circuit. Our method relies on the fact that physical modifications (regardless of their physical, activation, or action characteristics) alter the impedance of the chip. Hence, characterizing the impedance can lead to the detection of the tamper events. To sense the changes in the impedance, we deploy known RF tools, namely, scattering parameters, in which we inject sine wave signals with high frequencies to the power distribution network (PDN) of the system and measure the “echo” of the signal. The reflected signals in various frequency bands reveal different tamper events based on their impact size on the die. To validate our claims, we performed measurements on several proof-of-concept tampered hardware implementations realized on FPGAs manufactured with a 28 nm technology. We further show that deploying the Dynamic Time Warping (DTW) distance can distinguish between tamper events and noise resulting from manufacturing process variation of different chips/boards. Based on the acquired results, we demonstrate that stealthy hardware Trojans, as well as sophisticated modifications of P&R, can be detected
    corecore