7,512 research outputs found

    Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems

    Get PDF
    Crowdsourcing systems commonly face the problem of aggregating multiple judgments provided by potentially unreliable workers. In addition, several aspects of the design of efficient crowdsourcing processes, such as defining worker's bonuses, fair prices and time limits of the tasks, involve knowledge of the likely duration of the task at hand. Bringing this together, in this work we introduce a new time--sensitive Bayesian aggregation method that simultaneously estimates a task's duration and obtains reliable aggregations of crowdsourced judgments. Our method, called BCCTime, builds on the key insight that the time taken by a worker to perform a task is an important indicator of the likely quality of the produced judgment. To capture this, BCCTime uses latent variables to represent the uncertainty about the workers' completion time, the tasks' duration and the workers' accuracy. To relate the quality of a judgment to the time a worker spends on a task, our model assumes that each task is completed within a latent time window within which all workers with a propensity to genuinely attempt the labelling task (i.e., no spammers) are expected to submit their judgments. In contrast, workers with a lower propensity to valid labeling, such as spammers, bots or lazy labelers, are assumed to perform tasks considerably faster or slower than the time required by normal workers. Specifically, we use efficient message-passing Bayesian inference to learn approximate posterior probabilities of (i) the confusion matrix of each worker, (ii) the propensity to valid labeling of each worker, (iii) the unbiased duration of each task and (iv) the true label of each task. Using two real-world public datasets for entity linking tasks, we show that BCCTime produces up to 11% more accurate classifications and up to 100% more informative estimates of a task's duration compared to state-of-the-art methods

    Fidelity-Weighted Learning

    Full text link
    Training deep neural networks requires many training samples, but in practice training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality versus-quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we propose "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on two tasks in information retrieval and natural language processing where we outperform state-of-the-art alternative semi-supervised methods, indicating that our approach makes better use of strong and weak labels, and leads to better task-dependent data representations.Comment: Published as a conference paper at ICLR 201

    Toward Explainable Fashion Recommendation

    Full text link
    Many studies have been conducted so far to build systems for recommending fashion items and outfits. Although they achieve good performances in their respective tasks, most of them cannot explain their judgments to the users, which compromises their usefulness. Toward explainable fashion recommendation, this study proposes a system that is able not only to provide a goodness score for an outfit but also to explain the score by providing reason behind it. For this purpose, we propose a method for quantifying how influential each feature of each item is to the score. Using this influence value, we can identify which item and what feature make the outfit good or bad. We represent the image of each item with a combination of human-interpretable features, and thereby the identification of the most influential item-feature pair gives useful explanation of the output score. To evaluate the performance of this approach, we design an experiment that can be performed without human annotation; we replace a single item-feature pair in an outfit so that the score will decrease, and then we test if the proposed method can detect the replaced item correctly using the above influence values. The experimental results show that the proposed method can accurately detect bad items in outfits lowering their scores

    A Simulator for Concept Detector Output

    Get PDF
    Concept based video retrieval is a promising search paradigm because it is fully automated and it investigates the fine grained content of a video, which is normally not captured by human annotations. Concepts are captured by so-called concept detectors. However, since these detectors do not yet show a sufficient performance, the evaluation of retrieval systems, which are built on top of the detector output, is difficult. In this report we describe a software package which generates simulated detector output for a specified performance level. Afterwards, this output can be used to execute a search run and ultimately to evaluate the performance of the proposed retrieval method, which is normally done through comparison to a baseline. The probabilistic model of the detectors are two Gaussians, one for the positive and one for the negative class. Thus, the parameters for the simulation are the two means and deviations plus the prior probability of the concept in the dataset
    corecore