300 research outputs found

    Design, Synthesis and Analysis of Self-Assembling Triangulated Wireframe DNA Structures

    Get PDF
    The field of DNA nanotechnology offers a wide range of design strategies with which nanometer-sized structures with a desired shape, size and aspect ratio can be built. The most established techniques in the field rely on close-packed 'solid' DNA nanostructures produced with either the DNA origami or the single-stranded tile techniques. These structures depend on high-salt buffer solutions and require more material than comparable size hollow wireframe structures. This dissertation explores the construction of hollow wireframe DNA nanostructures composed of equilateral triangles. To achieve maximal material efficiency the design is restricted to use a single DNA double helix per triangle edge. As a proof of principle, the DNA origami technique is extended to produce a series of truss structures including the flat, tetrahedral, octahedral, or irregular dodecahedral truss designs. In contrast to close packed DNA origami designs these structures fold at low-salt buffer conditions. These structures have defined cavities that may in the future be used to precisely position functional elements such as metallic nanoparticles or enzymes. The design process of these structures is simplified by a custom design software. Next, the triangulated construction motif is extended to the single-stranded DNA tile technique. A collection of finite structures, as well as one-dimensional crystalline assemblies is explored. The ideal assembly conditions are determined experimentally and using molecular dynamics simulations. A custom design software is presented to simplify the design and handling of these structures. At last, the cost-effective prototyping of triangulated wireframe DNA origami structures is explored. This is achieved through the introduction of single-stranded “gap” regions along the triangle edges. These gap regions are then filled using a DNA polymerase rather than by synthetic oligonucleotides. This technique also allows the mechanical transformation of these structures, which is exemplified by the transition of a bent into a straight structure upon completion of the gap filling.:Abstract v Publications vii Acknowledgements ix Contents xi Chapter 1 A short introduction into DNA nanotechnology 1 1.1 Nanotechnology 1 1.1.1 Top down 1 1.1.2 Bottom up 3 1.2 Deoxyribonucleic acid (DNA) 4 1.3 DNA Nanotechnology 6 1.3.1 Tile based assembly 9 1.3.2 DNA origami and single-stranded tiles 10 1.3.3 Some applications of DNA nanotechnology 12 1.3.4 Wireframe structures 15 1.3.5 Computational tools and DNA nanotechnology. 17 Chapter 2 Motivation and objectives 19 Chapter 3 Design and Synthesis of Triangulated DNA Origami Trusses 20 3.1 Introduction 20 3.2 Results and Discussion 21 3.2.1 Design 21 3.2.2 Nomenclature and parameters of the tube structures 23 3.2.3 Gel electrophoreses analysis 25 3.2.4 Imaging of the purified structures 26 3.2.5 Optimizing the folding conditions 28 3.2.6 Comparison to vHelix 29 3.3 Conclusions 29 3.4 Methods 30 3.4.1 Standard DNA origami assembly reaction. 30 3.4.2 Gel purification. 30 3.4.3 AFM sample preparation. 31 3.4.4 TEM sample preparation. 31 3.4.5 Instructions for mixing the staple sets. 31 Chapter 4 Triangulated wireframe structures assembled using single-stranded DNA tiles 33 4.1 Introduction 33 4.2 Results and Discussion 35 4.2.1 Designing the structures 35 4.2.2 Synthesis of test structures 37 4.2.3 Molecular dynamics simulations of 6-arm junctions 38 4.2.4 Assembly of the finite structures 40 4.2.5 Influence of salt concentration and folding times 42 4.2.6 Molecular dynamics simulations of the rhombus structure 43 4.2.7 1D SST crystals 44 4.2.8 Controlling the crystal growth 46 4.3 Conclusions 48 4.4 Methods 49 4.4.1 SST Folding 49 4.4.2 Agarose Gel Electrophoresis 49 4.4.3 tSEM Characterization 49 4.4.4 AFM Imaging 49 4.4.5 AGE-Based Folding-Yield Estimation 49 4.4.6 Molecular Dynamics Simulations 50 Chapter 5 Structural transformation of wireframe DNA origami via DNA polymerase assisted gap-filling 52 5.1 Introduction 52 5.2 Results and Discussion 54 5.2.1 Design of the Structures 54 5.2.2 Folding of Gap-Structures 56 5.2.3 Inactivation of Polymerase. 57 5.2.4 Secondary Structures. 58 5.2.5 Folding Kinetics of Gap Origami. 60 5.3 Conclusions 61 5.4 Methods 62 5.4.1 DNA origami folding 62 5.4.2 Gap filling of the wireframe DNA origami structures 63 5.4.3 Agarose gel electrophoresis 63 5.4.4 PAGE gel analysis 63 5.4.5 tSEM characterization 64 5.4.6 AFM imaging 64 5.4.7 AGE based folding-yield estimation 64 5.4.8 Gibbs free energy simulation using mfold 65 5.4.9 List of sequence for folding the DNA origami triangulated structures 65 Chapter 6 Summary and outlook 67 Appendix 69 A.1 Additional figures from chapter 369 A.2 Additional figures from chapter 4 77 A.3 Additional figures from chapter 5 111 Bibliography 127 ErklĂ€rung 13

    Development of new approaches for characterising DNA origami-based nanostructures with atomic force microscopy and super-resolution microscopy

    Get PDF
    DNA nanotechnology has developed a versatile set of methods to utilise DNA self-assembly for the bottom-up construction of arbitrary two- and three-dimensional DNA objects in the nanometre size range, and to functionalise the structures with unprecedented site-specificity with nanoscale objects such as metallic and semiconductor nanoparticles, proteins, fluorescent dyes, or synthetic polymers. The advances in structure assembly have resulted in the application of functional DNA-based nanostructures in a gamut of fields from nanoelectronic circuitry, nanophotonics, sensing, drug delivery, to the use as host structure or calibration standard for different types of microscopy. However, the analytical means for characterising DNA-based nanostructures drag behind these advances. Open questions remain, amongst others in quantitative single-structure evaluation. While techniques such as atomic force microscopy (AFM) or transmission electron microscopy (TEM) offer feature resolution in the range of few nanometres, the number of evaluated structures is often limited by the time-consuming manual data analysis. This thesis has introduced two new approaches to quantitative structure evaluation using AFM and super-resolution fluorescence microscopy (SRM). To obtain quantitative data, semi-automated computational image analysis routines were tailored in both approaches. AFM was used to quantify the attachment yield and placement accuracy of poly(3-tri(ethylene glycol)thiophene)-b-oligodeoxynucleotide diblock copolymers on a rectangular DNA origami. This work has also introduced the first hybrid of DNA origami and a conjugated polymer that uses a highly defined polythiophene derivative synthesised via state-of-the-art Kumada catalyst-transfer polycondensation. Among the AFM-based studies on polymer-origami-hybrids, this was the first to attempt near-single molecule resolution, and the first to introduce computational image analysis. Using the FindFoci tool of the software ImageJ revealed attachment yields per handle between 26 - 33%, and determined a single block copolymer position with a precision of 80 - 90%. The analysis has pointed out parameters that potentially influence the attachment yield such as the handle density and already attached objects. Furthermore, it has suggested interactions between the attached polymer molecules. The multicolour SRM approach used the principles of single-molecule high-resolution co-localisation (SHREC) to evaluate the structural integrity and the deposition side of the DNA origami frame “tPad” based on target distances and angles in a chiral fluorophore pattern the tPads were labelled with. The computatinal routine that was developed for image analysis utilised clustering to identify the patterns in a sample’s signals and to determine their characteristic distances and angles for hundreds of tPads simultaneously. The method excluded noise robustly, and depicted the moderate proportion of intact tPads in the samples correctly. With a registration error in the range of 10 -15 nm after mapping of the colour channels, the precision of a single distance measurements on the origami appeared in the range of 20 - 30 nm. By broadening the scope of computational AFM image analysis and taking on a new SRM approach for structure analysis, this work has presented working approaches towards new tools for quantitative analysis in DNA nanotechnology. Furthermore, the work has presented a new approach to constructing hybrid structures from DNA origami and conjugated polymers, which will open up new possibilities in the construction of nanoelectronic and nanophotonic structures

    Functional optical surfaces by colloidal self-assembly: Colloid-to-film coupled cavities and colloidal lattices

    Get PDF
    Future developments in nanophotonics require facile, inexpensive and parallelizable fabrication methods and need a fundamental understanding of the spectroscopic properties of such nanostructures. These challenges can be met through colloidal self-assembly where pre-synthesized colloids are arranged over large areas at reasonable cost. As so-called colloidal building blocks, plasmonic nanoparticles and quantum dots are used because of their localized light confinement and localized light emission, respectively. These nanoscopic colloids acquires new hybrid spectroscopic properties through their structural arrangement. To explore the energy transfer between these nanoscopic building blocks, concepts from physical optics are used and implemented with the colloidal self-assembly approach from physical chemistry. Through an established synthesis, the nanocrystals are now available in large quantities, any they receive the tailored spectroscopic properties through directed self-assembly. Moreover, the tailored properties of the colloids and the use of stimuli-responsive polymers allow a functionality that goes beyond current developments. The basics developed in this habilitation thesis can lead to novel functional devices in the field of smart sensors, dynamic light modulators, and large-area quantum devices.:1 Abstract 2 2 State of the art 4 2.1 Metallic and semiconductive nanocrystals as colloidal building blocks 4 2.2 Concept of large-scale colloidal self-assembly 7 2.3 Functional optical nanomaterials by colloidal self-assembly 9 2.4 Scope 13 2.5 References 14 3 Single colloidal cavities 20 3.1 Nanorattles with tailored electric field enhancement 20 4 Colloidal -to-film coupled cavities 31 4.1 Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces 31 4.2 Single particle spectroscopy of radiative processes in colloid-to-film-coupled nanoantennas 50 4.3 Active plasmonic colloid-to-film coupled cavities for tailored light-matter interactions 65 5 Colloidal polymers 74 5.1 Direct observation of plasmon band formation and delocalization in quasi-infinite nanoparticle chains 74 6 Colloidal lattice 84 6.1 Hybridized guided-node resonances via colloidal plasmonic self-assembled grating 84 6.2 Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly 94 6.3 Tunable Circular Dichroism by Photoluminescent MoirĂ© Gratings 103 7 Conclusion and perspective 112 8 Appendix 113 8.1 Further publications during the habilitation period 113 8.2 Curriculum vitae of the author 116 9 Acknowledgments 117 10 Declaration 118ZukĂŒnftige Entwicklungen in der Nanophotonik erfordern einfache, kostengĂŒnstige und parallelisierbare Herstellungsmethoden und benötigen ein grundlegendes VerstĂ€ndnis der spektroskopischen Eigenschaften solcher Nanostrukturen. Diese Herausforderungen können durch kolloidale Selbstorganisation erfĂŒllt werden, bei der kostengĂŒnstige und zuvor synthetisierte Kolloide großflĂ€chig angeordnet werden. Als sogenannte kolloide Bausteine werden wegen ihrer lokalisierten Lichtfokussierung unterhalb der Beugungsbegrenzung plasmonische Nanopartikel sowie wegen ihrer lokalisierten Lichtemission Quantenpunkte verwendet. Diese nanoskopischen Kolloide werden in dieser Habilitationsschrift verwendet und durch Selbstanordnung in ihre gewĂŒnschte Nanostruktur gebracht, die neue hybride Eigenschaften aufweist. Um den Energietransfer zwischen diesen nanoskopischen Bausteinen zu untersuchen, werden Konzepte aus der physikalischen Optik verwendet und mit dem kolloidalen Selbstorganisationskonzept aus der physikalischen Chemie großflĂ€chig umgesetzt. Durch eine etablierte Synthese sind die Nanokristalle nun in großen Mengen verfĂŒgbar, wobei sie durch gerichtete Selbstorganisation die gewĂŒnschten spektroskopischen Eigenschaften erhalten. DarĂŒber hinaus ermöglicht die Verwendung von stimulierbaren Polymeren eine FunktionalitĂ€t, die ĂŒber die bisherigen Entwicklungen hinausgeht. Die in dieser Habilitationsschrift entwickelten Grundlagen können bei der Entwicklung neuartiger FunktionsgerĂ€te im Bereich fĂŒr intelligente Sensorik, dynamischer Lichtmodulatoren und großflĂ€chiger QuantengerĂ€te genutzt werden.:1 Abstract 2 2 State of the art 4 2.1 Metallic and semiconductive nanocrystals as colloidal building blocks 4 2.2 Concept of large-scale colloidal self-assembly 7 2.3 Functional optical nanomaterials by colloidal self-assembly 9 2.4 Scope 13 2.5 References 14 3 Single colloidal cavities 20 3.1 Nanorattles with tailored electric field enhancement 20 4 Colloidal -to-film coupled cavities 31 4.1 Template-assisted colloidal self-assembly of macroscopic magnetic metasurfaces 31 4.2 Single particle spectroscopy of radiative processes in colloid-to-film-coupled nanoantennas 50 4.3 Active plasmonic colloid-to-film coupled cavities for tailored light-matter interactions 65 5 Colloidal polymers 74 5.1 Direct observation of plasmon band formation and delocalization in quasi-infinite nanoparticle chains 74 6 Colloidal lattice 84 6.1 Hybridized guided-node resonances via colloidal plasmonic self-assembled grating 84 6.2 Mechanotunable surface lattice resonances in the visible optical range by soft lithography templates and directed self-assembly 94 6.3 Tunable Circular Dichroism by Photoluminescent MoirĂ© Gratings 103 7 Conclusion and perspective 112 8 Appendix 113 8.1 Further publications during the habilitation period 113 8.2 Curriculum vitae of the author 116 9 Acknowledgments 117 10 Declaration 11

    Materials Science and Technology

    Get PDF
    Materials are important to mankind because of the benefits that can be derived from the manipulation of their properties, for example electrical conductivity, dielectric constant, magnetization, optical transmittance, strength and toughness. Materials science is a broad field and can be considered to be an interdisciplinary area. Included within it are the studies of the structure and properties of any material, the creation of new types of materials, and the manipulation of a material's properties to suit the needs of a specific application. The contributors of the chapters in this book have various areas of expertise. therefore this book is interdisciplinary and is written for readers with backgrounds in physical science. The book consists of fourteen chapters that have been divided into four sections. Section one includes five chapters on advanced materials and processing. Section two includes two chapters on bio-materials which deal with the preparation and modification of new types of bio-materials. Section three consists of three chapters on nanomaterials, specifically the study of carbon nanotubes, nano-machining, and nanoparticles. Section four includes four chapters on optical materials

    Development of Lipid Based Tetrahydrocurcumin Nutricosmetics: Investigation of Essential Oil as Preservation Sysyem

    Get PDF
    AIM AND OBJECTIVES: Lipid based formulations usually contain lipid (soild or liquid) dispersed in aqueous solution of surfactant (or co-surfactant). Nano structured lipid carriers are proved to be suitable carriers with various advantages like (i) controlled release of the drug (ii) increased drug stability (iii) high drug loading (iv) no bio toxicity of the carrier (v) avoidance of organic solvents and (vi) no problems with respect to large scale production and sterilization. But, they often show poor stability due to microbial growth. Moreover, the problem of bacterial resistance to conventional preservatives has been observed in recent years. Traditionally used chemical preservatives often cause skin irritation and lead to allergenic reactions. All these factors have contributed to a search for alternative preservative systems. Hence, there is a lacuna to identify a natural preservative which can enhance the stability of lipid based formulations. These natural lipids (oils) have high oxidative resistance and are biocompatible, with no deleterious effects on the skin. The exotic fats used in skin care are known to exhibit their effects through restoration of a sufficient layer of skin lipids and skin elasticity, boost natural skin regeneration and increased skin hydration by forming an inert, epicutaneous occlusive membrane. Besides these facts, cocoa butter, mango butter, mineral and petroleum which is one of several exotic fats is viewed as an ingenious replacement for chemicals based lipid fat because of its appreciable contents which are very important as source of skin active ingredients. Furthermore, using of natural surfactants is viewed as alternative to replace helping to reduce contamination of the environment with drug particles. Like conventional properties offers exceptional surfactant blends with a balanced combination and dermatological properties in cosmeceuticals products. Therefore, the suitable use of a base surfactant or a cosurfactant in cosmetic cleansing preparations is attractive in the recent past. Natural surfactants show a lower irritation potential in comparison to other surfactants and confirming the excellent suitability. An idea of natural preservatives seems to be very promising and practical in terms of availability and eco friendly nature. Nowadays much attention has been focused on essential oils (EOs) that demonstrate antimicrobial activities and have been proposed as natural preservatives. Recent studies provided evidence that different mechanisms are involved in antibacterial activity of essential oils (EOs). EOs is usually considered safe due to their natural origin. Although most EOs is regarded as safe, some of them may cause risk of irritation, sensitization, phototoxicity or allergic reactions including anaphylaxis. EOs are also effective in controlling bacterial and fungicidal activity, which is an important criteria of a preservative. Growing demands for more natural and preservative- free cosmetics promoted an idea of the replacement of synthetic preservatives with essential oils (EOs) of antimicrobial properties. The antimicrobial effect of essential oil depends on content, concentration and interactions between the main active compounds. Effective preservatives should be characterized by a broad spectrum of antimicrobial activity at a minimum concentration. Based on these facts, the aim of this work is to develop a natural preservative system using essential oils with antimicrobial activity to enhance the preservation of nutricosmetics which are prepared using natural lipids and surfactants. For this purpose, nanostructured lipid carriers of tetrahydrocurcumin would be prepared with using essential oils with enhanced stability. The project would be carried out with the following objectives: To screen out various essential oils for their antimicrobial activity and evaluation of their minimum inhibitory concentration against different bacterial strains. To develop nano structural lipid carriers (NLC’s) and lipid based cream of Tetrahydrocurcumin (THC). To characterize and optimize the NLCs and lipid based cream of Tetrahydrocurcumin. To evaluate the stability of the NLCs and lipid based cream. To evaluate the antimicrobial activity of NLCs and lipid based cream of Tetrahydrocurcumin.SUMMARY AND CONCLUSION: Generally, lipid based formulations often show poor stability due to microbial growth. The problem of bacterial resistance to conventional preservatives has been observed in recent years. In the current study, an attempt was made to enhance the stability of THC loaded lipid based formulations for nutricosmeceutical purpose using a natural preservation system.THC loaded nanostructured lipid carriers were prepared to serve as a carrier to enhance the bioavailability of THC for nutraceutical purpose and lipid based cream loaded with NLCs of THC were prepared to serve as a carrier for the delivery of THC for cosmetic purpose. Initially, essential oils like cinnamon oil, peppermint oil, eucalyptus oil, lavender oil, clove oil, lemon grass oil, castor oil, neem oil and their mixtures were evaluated for antimicrobial activity. The results indicated a better antimicrobial property for cinnamon oil. Hence, THC loaded nanostructured lipid carriers and the corresponding creams were prepared using cinnamon oil as liquid oil carrier. THC loaded NLC were prepared from Cocoa butter, cinnamon oil and Soya lecithin by hot homogenization technique using ultra probe sonicator. The spherical shaped nanostructure lipid particles with a particle size of 55 nm showed a sustained release pattern across pig ear skin for around 96 % for 48 hours. The antimicrobial activity was studied by disc diffusion study, TNC 4 has good activity against gram positive (E.coli) and gram negative (S.aureus) bacterial strains These THC loaded nanostructure lipid particles were loaded in a lipid based cream (prepared from Cocoa butter, Cinnamon oil, Soya Lecithin). Evaluation of the texture properties of the lipid cream loaded with THC NLCs showed good firmness and stickiness. THC NLCs and lipid based cream loaded with THC NLCs showed good stability during the initial 3 months without any microbial contamination. Long term stability studies are in progress to evaluate the stability of the lipid based formulations for a period of 1 year. Lipid based nutricosmeceuticals prepared using cinnamon oil as a liquid oil can be a good promising natural preservative against microbial contamination and can possibly enhance the stability of several other lipid based nutricosmeceuticals loaded with different types of drugs

    Advances in DNA-PAINT super-resolution microscopy

    Get PDF

    Coupling quantum emitters to nanophotonic structures

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica de la Materia Condensada. Fecha de lectura: 02-02-201

    Dilute-Nitride Low-Dimensional Nanostructures Formed on Non-Planar Substrates

    Get PDF
    The properties of semiconductors heterostructures of nanoscopic dimensions change from that of bulk material according to the rules of quantum mechanics. The planar quantum wells (QWs) are widely used in various diode and laser devices thanks to the relative ease of fabrication and to their improved electronic and optical performance compared to bulk materials. Quantum effects become more apparent when the charge carriers are confined in more than 1 spatial dimension. Much scientific interest was initially dedicated to the quantum wire (QWR) structures, which confine carriers into a quasi-1D space. But their sensitivity to disorder and the development of efficient fabrication methods of quantum dots (QD) shifted the attention to this latter system. The carrier confinement in the three directions of space confers to these structures a discrete spectrum of energy states, with the state occupancy ruled by the Pauli exclusion principle. The prospective applications are numerous in domains such as ultra-low threshold lasers, quantum cryptography, true random numbers generation, quantum electrodynamics experiments, etc. One of the prominent semiconductor growth techniques is the metalorganic vapour phase epitaxy (MOVPE). We used this method to produce ordered QWRs and QDs at the bottom of V-shaped and tetrahedral recesses, respectively. These nanostructures form by the complimentary actions of nano-capillarity and growth rate anisotropy in these recesses etched in GaAs substrates. This fabrication process offers some key advantages over other methods. The emission energy is very well controlled, with a narrow inhomogeneous broadening and a high uniformity across the wafer. Combined with the highly precise control on the formation site, this offers the possibility of high-yield integration of one or even several nanostructures, e.g., into photonic crystal devices. Other advantages of this approach are the impressive tunability of the electronic potential within the nanostructures and the possible use of well-defined intraband transitions. However, the emission energy of V-groove QWRs and pyramidal QDs studied so far is quite limited due to the formation mechanism imposing a low degree of strain. Incorporation of nitrogen has dramatic effects on the band structure of GaAs-based materials. Dilute concentrations ( 250 meV). The substrate miscut and the surface corrugations are shown to play an important role in the N incorporation efficiency: QWs grown on large substrate misorientations emit at longer wavelength than those grown on usual (100)-"exact" substrates, while exhibiting a comparable luminescence efficiency. The importance of a uniform N distribution within the QW is stressed, which appears difficult to achieve when the effect of surface corrugation is combined with that of In segregation. The second part of the work focuses on the N incorporation into V-groove QWRs. Important emission redshifts are achieved, in the ∌ 250 meV range. We first detail the emission spectrum and assert the 1D-character of the carrier wavefunctions. The influence of various growth and structural parameters is explored, leading to the fabrication of QWRs emitting at 1.3 ÎŒm at room temperature. The evolution of the polarization properties with temperature is also characterized. The third main topic and primary goal of this thesis is the nitrogen incorporation into QDs formed in inverted pyramids etched on (111)B GaAs substrates. A study is first conducted to understand the effects of several growth and structural parameters on the emission properties of InGaAs QDs. Nitrogen incorporation into QDs is then successfully demonstrated. The monitoring of the lateral QWR emission energy suggests a peculiar N incorporation pattern, or a significant perturbation of the formation of these lateral nanostructures. By contrast to what achieved with QWs and QWR structures, only limited emission redshifts were achieved (∌ 75 meV). The QD linewidths, degree of linear polarization and fine structure splitting are significantly deteriorated when compared to the InGaAs counterparts. These results cast serious doubts on the perspective of high-quality GaAs-based QDs in pyramids emitting at long wavelength. Our results demonstrate that nitrogen does not have the potential to shift the emission wave-length of InGaAs pyramidal QDs up to 1.3 ÎŒm, while simultaneously satisfying strict quality requirements. But other material systems may offer such opportunities. We briefly explore the possibilities of growing InGaAs/InAlAs nanostructures on patterned InP wafers. This ongoing project may open new possibilities for exploiting the pyramidal QD system. A kinetic Monte-Carlo numerical algorithm was implemented, reproducing by deposition and diffusion processes the evolution of the pyramidal template during growth. The numerical experiments were compared with post-growth AFM measurements of real samples. The recesses are observed to strongly affect the monatomic step flow on the neighboring (111)B surfaces. The simulations especially evidence the strong attraction of the pyramid apex on the atoms of the surrounding area, tending to elevate the QD formation site from the nominal C3V symmetry toward a hexagonal one

    EU US Roadmap Nanoinformatics 2030

    Get PDF
    The Nanoinformatics Roadmap 2030 is a compilation of state-of-the-art commentaries from multiple interconnecting scientific fields, combined with issues involving nanomaterial (NM) risk assessment and governance. In bringing these issues together into a coherent set of milestones, the authors address three recognised challenges facing nanoinformatics: (1) limited data sets; (2) limited data access; and (3) regulatory requirements for validating and accepting computational models. It is also recognised that data generation will progress unequally and unstructured if not captured within a nanoinformatics framework based on harmonised, interconnected databases and standards. The implicit coordination efforts within such a framework ensure early use of the data for regulatory purposes, e.g., for the read-across method of filling data gaps
    • 

    corecore