235 research outputs found

    Robot Mapping and Navigation by Fusing Sensory Information

    Get PDF

    Visual Navigation for Robots in Urban and Indoor Environments

    Get PDF
    As a fundamental capability for mobile robots, navigation involves multiple tasks including localization, mapping, motion planning, and obstacle avoidance. In unknown environments, a robot has to construct a map of the environment while simultaneously keeping track of its own location within the map. This is known as simultaneous localization and mapping (SLAM). For urban and indoor environments, SLAM is especially important since GPS signals are often unavailable. Visual SLAM uses cameras as the primary sensor and is a highly attractive but challenging research topic. The major challenge lies in the robustness to lighting variation and uneven feature distribution. Another challenge is to build semantic maps composed of high-level landmarks. To meet these challenges, we investigate feature fusion approaches for visual SLAM. The basic rationale is that since urban and indoor environments contain various feature types such points and lines, in combination these features should improve the robustness, and meanwhile, high-level landmarks can be defined as or derived from these combinations. We design a novel data structure, multilayer feature graph (MFG), to organize five types of features and their inner geometric relationships. Building upon a two view-based MFG prototype, we extend the application of MFG to image sequence-based mapping by using EKF. We model and analyze how errors are generated and propagated through the construction of a two view-based MFG. This enables us to treat each MFG as an observation in the EKF update step. We apply the MFG-EKF method to a building exterior mapping task and demonstrate its efficacy. Two view based MFG requires sufficient baseline to be successfully constructed, which is not always feasible. Therefore, we further devise a multiple view based algorithm to construct MFG as a global map. Our proposed algorithm takes a video stream as input, initializes and iteratively updates MFG based on extracted key frames; it also refines robot localization and MFG landmarks using local bundle adjustment. We show the advantage of our method by comparing it with state-of-the-art methods on multiple indoor and outdoor datasets. To avoid the scale ambiguity in monocular vision, we investigate the application of RGB-D for SLAM.We propose an algorithm by fusing point and line features. We extract 3D points and lines from RGB-D data, analyze their measurement uncertainties, and compute camera motion using maximum likelihood estimation. We validate our method using both uncertainty analysis and physical experiments, where it outperforms the counterparts under both constant and varying lighting conditions. Besides visual SLAM, we also study specular object avoidance, which is a great challenge for range sensors. We propose a vision-based algorithm to detect planar mirrors. We derive geometric constraints for corresponding real-virtual features across images and employ RANSAC to develop a robust detection algorithm. Our algorithm achieves a detection accuracy of 91.0%

    General Concept of 3D SLAM

    Get PDF

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Theory, Design, and Implementation of Landmark Promotion Cooperative Simultaneous Localization and Mapping

    Get PDF
    Simultaneous Localization and Mapping (SLAM) is a challenging problem in practice, the use of multiple robots and inexpensive sensors poses even more demands on the designer. Cooperative SLAM poses specific challenges in the areas of computational efficiency, software/network performance, and robustness to errors. New methods in image processing, recursive filtering, and SLAM have been developed to implement practical algorithms for cooperative SLAM on a set of inexpensive robots. The Consolidated Unscented Mixed Recursive Filter (CUMRF) is designed to handle non-linear systems with non-Gaussian noise. This is accomplished using the Unscented Transform combined with Gaussian Mixture Models. The Robust Kalman Filter is an extension of the Kalman Filter algorithm that improves the ability to remove erroneous observations using Principal Component Analysis (PCA) and the X84 outlier rejection rule. Forgetful SLAM is a local SLAM technique that runs in nearly constant time relative to the number of visible landmarks and improves poor performing sensors through sensor fusion and outlier rejection. Forgetful SLAM correlates all measured observations, but stops the state from growing over time. Hierarchical Active Ripple SLAM (HAR-SLAM) is a new SLAM architecture that breaks the traditional state space of SLAM into a chain of smaller state spaces, allowing multiple robots, multiple sensors, and multiple updates to occur in linear time with linear storage with respect to the number of robots, landmarks, and robots poses. This dissertation presents explicit methods for closing-the-loop, joining multiple robots, and active updates. Landmark Promotion SLAM is a hierarchy of new SLAM methods, using the Robust Kalman Filter, Forgetful SLAM, and HAR-SLAM. Practical aspects of SLAM are a focus of this dissertation. LK-SURF is a new image processing technique that combines Lucas-Kanade feature tracking with Speeded-Up Robust Features to perform spatial and temporal tracking. Typical stereo correspondence techniques fail at providing descriptors for features, or fail at temporal tracking. Several calibration and modeling techniques are also covered, including calibrating stereo cameras, aligning stereo cameras to an inertial system, and making neural net system models. These methods are important to improve the quality of the data and images acquired for the SLAM process

    A distributed architecture for unmanned aerial systems based on publish/subscribe messaging and simultaneous localisation and mapping (SLAM) testbed

    Get PDF
    A dissertation submitted in fulfilment for the degree of Master of Science. School of Computational and Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa, November 2017The increased capabilities and lower cost of Micro Aerial Vehicles (MAVs) unveil big opportunities for a rapidly growing number of civilian and commercial applications. Some missions require direct control using a receiver in a point-to-point connection, involving one or very few MAVs. An alternative class of mission is remotely controlled, with the control of the drone automated to a certain extent using mission planning software and autopilot systems. For most emerging missions, there is a need for more autonomous, cooperative control of MAVs, as well as more complex data processing from sensors like cameras and laser scanners. In the last decade, this has given rise to an extensive research from both academia and industry. This research direction applies robotics and computer vision concepts to Unmanned Aerial Systems (UASs). However, UASs are often designed for specific hardware and software, thus providing limited integration, interoperability and re-usability across different missions. In addition, there are numerous open issues related to UAS command, control and communication(C3), and multi-MAVs. We argue and elaborate throughout this dissertation that some of the recent standardbased publish/subscribe communication protocols can solve many of these challenges and meet the non-functional requirements of MAV robotics applications. This dissertation assesses the MQTT, DDS and TCPROS protocols in a distributed architecture of a UAS control system and Ground Control Station software. While TCPROS has been the leading robotics communication transport for ROS applications, MQTT and DDS are lightweight enough to be used for data exchange between distributed systems of aerial robots. Furthermore, MQTT and DDS are based on industry standards to foster communication interoperability of “things”. Both protocols have been extensively presented to address many of today’s needs related to networks based on the internet of things (IoT). For example, MQTT has been used to exchange data with space probes, whereas DDS was employed for aerospace defence and applications of smart cities. We designed and implemented a distributed UAS architecture based on each publish/subscribe protocol TCPROS, MQTT and DDS. The proposed communication systems were tested with a vision-based Simultaneous Localisation and Mapping (SLAM) system involving three Parrot AR Drone2 MAVs. Within the context of this study, MQTT and DDS messaging frameworks serve the purpose of abstracting UAS complexity and heterogeneity. Additionally, these protocols are expected to provide low-latency communication and scale up to meet the requirements of real-time remote sensing applications. The most important contribution of this work is the implementation of a complete distributed communication architecture for multi-MAVs. Furthermore, we assess the viability of this architecture and benchmark the performance of the protocols in relation to an autonomous quadcopter navigation testbed composed of a SLAM algorithm, an extended Kalman filter and a PID controller.XL201
    corecore