8,419 research outputs found

    El Fin

    Get PDF
    EIC George K. Thiruvathukal says farewell in his final from the editors message

    The Weakest Failure Detector for Eventual Consistency

    Get PDF
    In its classical form, a consistent replicated service requires all replicas to witness the same evolution of the service state. Assuming a message-passing environment with a majority of correct processes, the necessary and sufficient information about failures for implementing a general state machine replication scheme ensuring consistency is captured by the {\Omega} failure detector. This paper shows that in such a message-passing environment, {\Omega} is also the weakest failure detector to implement an eventually consistent replicated service, where replicas are expected to agree on the evolution of the service state only after some (a priori unknown) time. In fact, we show that {\Omega} is the weakest to implement eventual consistency in any message-passing environment, i.e., under any assumption on when and where failures might occur. Ensuring (strong) consistency in any environment requires, in addition to {\Omega}, the quorum failure detector {\Sigma}. Our paper thus captures, for the first time, an exact computational difference be- tween building a replicated state machine that ensures consistency and one that only ensures eventual consistency

    Gluon sivers and experimental considerations for TMDs

    Full text link
    The study and characterisation of transverse-momentum-dependent distribution functions (TMDs) is a major goal of the Electron-Ion Collider (EIC) physics programme. The study of gluon TMDs poses a greater challenge than for quark TMDs in DIS measurements, as gluons do not directly couple to photons. The study of D meson pairs has been proposed to provide access to gluon TMDs, but is demanding due to the rarity of D production. Here, we discuss the feasibility of such a measurement, and touch upon wider issues to be considered when measuring TMDs at the EIC.Comment: 4 pages, 2 figures, DIS 2012 conferenc

    Macroscopically local correlations can violate information causality

    Full text link
    Although quantum mechanics is a very successful theory, its foundations are still a subject of intense debate. One of the main problems is the fact that quantum mechanics is based on abstract mathematical axioms, rather than on physical principles. Quantum information theory has recently provided new ideas from which one could obtain physical axioms constraining the resulting statistics one can obtain in experiments. Information causality and macroscopic locality are two principles recently proposed to solve this problem. However none of them were proven to define the set of correlations one can observe. In this paper, we present an extension of information causality and study its consequences. It is shown that the two above-mentioned principles are inequivalent: if the correlations allowed by nature were the ones satisfying macroscopic locality, information causality would be violated. This gives more confidence in information causality as a physical principle defining the possible correlation allowed by nature.Comment: are welcome. 6 pages, 4 figs. This is the originally submitted version. The published version contains some bounds on quantum realizations of d2dd isotropic boxes (table 1), found by T. Vertesi, who kindly shared them with u
    corecore