8,158 research outputs found

    Single-trial analysis of EEG during rapid visual discrimination: enabling cortically-coupled computer vision

    Get PDF
    We describe our work using linear discrimination of multi-channel electroencephalography for single-trial detection of neural signatures of visual recognition events. We demonstrate the approach as a methodology for relating neural variability to response variability, describing studies for response accuracy and response latency during visual target detection. We then show how the approach can be utilized to construct a novel type of brain-computer interface, which we term cortically-coupled computer vision. In this application, a large database of images is triaged using the detected neural signatures. We show how ‘corticaltriaging’ improves image search over a strictly behavioral response

    Curiosity cloning: neural analysis of scientific knowledge

    Get PDF
    Event-related potentials (ERPs) are indicators of brain activity related to cognitive processes. They can be de- tected from EEG signals and thus constitute an attractive non-invasive option to study cognitive information pro- cessing. The P300 wave is probably the most celebrated example of an event-related potential and it is classically studied in connection to the odd-ball paradigm experi- mental protocol, able to consistently provoke the brain wave. We propose the use of P300 detection to identify the scientific interest in a large set of images and train a computer with machine learning algorithms using the subject’s responses to the stimuli as the training data set. As a first step, we here describe a number of experiments designed to relate the P300 brain wave to the cognitive processes related to placing a scientific judgment on a picture and to study the number of images per seconds that can be processed by such a system

    A review of rapid serial visual presentation-based brain-computer interfaces

    Get PDF
    International audienceRapid serial visual presentation (RSVP) combined with the detection of event related brain responses facilitates the selection of relevant information contained in a stream of images presented rapidly to a human. Event related potentials (ERPs) measured non-invasively with electroencephalography (EEG) can be associated with infrequent targets amongst a stream of images. Human-machine symbiosis may be augmented by enabling human interaction with a computer, without overt movement, and/or enable optimization of image/information sorting processes involving humans. Features of the human visual system impact on the success of the RSVP paradigm, but pre-attentive processing supports the identification of target information post presentation of the information by assessing the co-occurrence or time-locked EEG potentials. This paper presents a comprehensive review and evaluation of the limited but significant literature on research in RSVP-based brain-computer interfaces (BCIs). Applications that use RSVP-based BCIs are categorized based on display mode and protocol design, whilst a range of factors influencing ERP evocation and detection are analyzed. Guidelines for using the RSVP-based BCI paradigms are recommended, with a view to further standardizing methods and enhancing the inter-relatability of experimental design to support future research and the use of RSVP-based BCIs in practice

    Single-trial detection of realistic images with magnetoencephalography

    Get PDF
    corecore