85 research outputs found

    EEG-based person identification through binary flower pollination algorithm

    Get PDF
    Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications

    Know your mind: Adaptive cognitive activity recognition with reinforced CNN

    Full text link
    © 2019 IEEE. Electroencephalography (EEG) signals reflect and measure activities in certain brain areas. Its zero clinical risk and easy-to-use features make it a good choice of providing insights into the cognitive process. However, effective analysis of time-varying EEG signals remains challenging. First, EEG signal processing and feature engineering are time-consuming and highly rely on expert knowledge, and most existing studies focus on domain-specific classification algorithms, which may not apply to other domains. Second, EEG signals usually have low signal-to-noise ratios and are more chaotic than other sensor signals. In this regard, we propose a generic EEG-based cognitive activity recognition framework that can adaptively support a wide range of cognitive applications to address the above issues. The framework uses a reinforced selective attention model to choose the characteristic information among raw EEG signals automatically. It employs a convolutional mapping operation to dynamically transform the selected information into a feature space to uncover the implicit spatial dependency of EEG sample distribution. We demonstrate the effectiveness of the framework under three representative scenarios: intention recognition with motor imagery EEG, person identification, and neurological diagnosis, and further evaluate it on three widely used public datasets. The experimental results show our framework outperforms multiple state-of-the-art baselines and achieves competitive accuracy on all the datasets while achieving low latency and high resilience in handling complex EEG signals across various domains. The results confirm the suitability of the proposed generic approach for a range of problems in the realm of brain-computer Interface applications

    Energy-efficient resource allocation scheme based on enhanced flower pollination algorithm for cloud computing data center

    Get PDF
    Cloud Computing (CC) has rapidly emerged as a successful paradigm for providing ICT infrastructure. Efficient and environmental-friendly resource allocation mechanisms, responsible for allocatinpg Cloud data center resources to execute user applications in the form of requests are undoubtedly required. One of the promising Nature-Inspired techniques for addressing virtualization, consolidation and energyaware problems is the Flower Pollination Algorithm (FPA). However, FPA suffers from entrapment and its static control parameters cannot maintain a balance between local and global search which could also lead to high energy consumption and inadequate resource utilization. This research developed an enhanced FPA-based energy efficient resource allocation scheme for Cloud data center which provides efficient resource utilization and energy efficiency with less probable Service Level Agreement (SLA) violations. Firstly, an Enhanced Flower Pollination Algorithm for Energy-Efficient Virtual Machine Placement (EFPA-EEVMP) was developed. In this algorithm, a Dynamic Switching Probability (DSP) strategy was adopted to balance the local and global search space in FPA used to minimize the energy consumption and maximize resource utilization. Secondly, Multi-Objective Hybrid Flower Pollination Resource Consolidation (MOH-FPRC) algorithm was developed. In this algorithm, Local Neighborhood Search (LNS) and Pareto optimisation strategies were combined with Clustering algorithm to avoid local trapping and address Cloud service providers conflicting objectives such as energy consumption and SLA violation. Lastly, Energy-Aware Multi-Cloud Flower Pollination Optimization (EAM-FPO) scheme was developed for distributed Multi-Cloud data center environment. In this scheme, Power Usage Effectiveness (PUE) and migration controller were utilised to obtain the optimal solution in a larger search space of the CC environment. The scheme was tested on MultiRecCloudSim simulator. Results of the simulation were compared with OEMACS, ACS-VMC, and EA-DP. The scheme produced outstanding performance improvement rate on the data center energy consumption by 20.5%, resource utilization by 23.9%, and SLA violation by 13.5%. The combined algorithms have reduced entrapment and maintaned balance between local and global search. Therefore, based on the findings the developed scheme has proven to be efficient in minimizing energy consumption while at the same time improving the data center resource allocation with minimum SLA violation

    Hybrid feature selection based on principal component analysis and grey wolf optimizer algorithm for Arabic news article classification

    Get PDF
    The rapid growth of electronic documents has resulted from the expansion and development of internet technologies. Text-documents classification is a key task in natural language processing that converts unstructured data into structured form and then extract knowledge from it. This conversion generates a high dimensional data that needs further analusis using data mining techniques like feature extraction, feature selection, and classification to derive meaningful insights from the data. Feature selection is a technique used for reducing dimensionality in order to prune the feature space and, as a result, lowering the computational cost and enhancing classification accuracy. This work presents a hybrid filter-wrapper method based on Principal Component Analysis (PCA) as a filter approach to select an appropriate and informative subset of features and Grey Wolf Optimizer (GWO) as wrapper approach (PCA-GWO) to select further informative features. Logistic Regression (LR) is used as an elevator to test the classification accuracy of candidate feature subsets produced by GWO. Three Arabic datasets, namely Alkhaleej, Akhbarona, and Arabiya, are used to assess the efficiency of the proposed method. The experimental results confirm that the proposed method based on PCA-GWO outperforms the baseline classifiers with/without feature selection and other feature selection approaches in terms of classification accuracy

    Driving Style Recognition Based on Electroencephalography Data From a Simulated Driving Experiment

    Get PDF
    Driving style is a very important indicator and a crucial measurement of a driver's performance and ability to drive in a safe and protective manner. A dangerous driving style would possibly result in dangerous behaviors. If the driving styles can be recognized by some appropriate classification methods, much attention could be paid to the drivers with dangerous driving styles. The driving style recognition module can be integrated into the advanced driving assistance system (ADAS), which integrates different modules to improve driving automation, safety and comfort, and then the driving safety could be enhanced by pre-warning the drivers or adjusting the vehicle's controlling parameters when the dangerous driving style is detected. In most previous studies, driver's questionnaire data and vehicle's objective driving data were utilized to recognize driving styles. And promising results were obtained. However, these methods were indirect or subjective in driving style evaluation. In this paper a method based on objective driving data and electroencephalography (EEG) data was presented to classify driving styles. A simulated driving system was constructed and the EEG data and the objective driving data were collected synchronously during the simulated driving. The driving style of each participant was classified by clustering the driving data via K-means. Then the EEG data was denoised and the amplitude and the Power Spectral Density (PSD) of four frequency bands were extracted as the EEG features by Fast Fourier transform and Welch. Finally, the EEG features, combined with the classification results of the driving data were used to train a Support Vector Machine (SVM) model and a leave-one-subject-out cross validation was utilized to evaluate the performance. The SVM classification accuracy was about 80.0%. Conservative drivers showed higher PSDs in the parietal and occipital areas in the alpha and beta bands, aggressive drivers showed higher PSD in the temporal area in the delta and theta bands. These results imply that different driving styles were related with different driving strategies and mental states and suggest the feasibility of driving style recognition from EEG patterns

    Smart Manufacturing

    Get PDF
    This book is a collection of 11 articles that are published in the corresponding Machines Special Issue “Smart Manufacturing”. It represents the quality, breadth and depth of the most updated study in smart manufacturing (SM); in particular, digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the Internet to expand system capabilities, (3) supporting data-driven decision-making activities at various domains and levels of businesses, or (4) reconfiguring systems to adapt to changes and uncertainties. System smartness can be evaluated by one or a combination of performance metrics such as degree of automation, cost-effectiveness, leanness, robustness, flexibility, adaptability, sustainability, and resilience. This book features, firstly, the concepts digital triad (DT-II) and Internet of digital triad things (IoDTT), proposed to deal with the complexity, dynamics, and scalability of complex systems simultaneously. This book also features a comprehensive survey of the applications of digital technologies in space instruments; a systematic literature search method is used to investigate the impact of product design and innovation on the development of space instruments. In addition, the survey provides important information and critical considerations for using cutting edge digital technologies in designing and manufacturing space instruments

    A Network Theoretical Approach to Real-World Problems: Application of the K-Core Algorithm to Various Systems

    Full text link
    The study of complex networks is, at its core, an exploration of the mechanisms that control the world in which we live at every scale, from particles no bigger than a grain of sand and amino acids that comprise proteins, to social networks, ecosystems, and even countries. Indeed, we find that, regardless of the physical size of the network\u27s components, we may apply principles of complex network theory, thermodynamics, and statistical mechanics to not only better understand these specific networks, but to formulate theories which may be applied to problems on a more general level. This thesis explores several networks at vastly different scales, ranging from the microscopic (amino acids and frictional packed particles) to the macroscopic (human subjects asked to view a set of videos) to the massive (real ecosystems and the financial ecosystem (Haldane 2011, May 2008) of stocks in the S&P500 stock index). The networks are discussed in chronological order of analysis. We begin with a review of k-core theory, including its applications to certain dynamical systems, as this is an important concept to understand for the next two sections. A discussion of the network structure (specifically, a k-shell decomposition) of both ecological and financial dynamic networks, and the implications of this structure for determining a network\u27s tipping point of collapse, follows. Third, this same k-shell structure is examined for networks of frictional particles approaching a jamming transition, where it is seen that the jamming transition is a k-core transition given by random network theory. Lastly comes a thermodynamical examination of human eye-tracking networks built from data of subjects asked to watch the commercials of the 2014 Super Bowl Game; we determine, using a Maximum Entropy approach, that the collective behavior of this small sample can be used to predict population-wide preferences. The behavior of all of these networks are explained using aspects of network theoretical and statistical mechanics frameworks and can be extended beyond the specific networks analyzed herein
    corecore