667 research outputs found

    Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing

    Get PDF
    Brain computer interfaces (BCI) provide a new approach to human computer communication, where the control is realised via performing mental tasks such as motor imagery (MI). In this study, we investigate a novel method to automatically segment electroencephalographic (EEG) data within a trial and extract features accordingly in order to improve the performance of MI data classification techniques. A new local discriminant bases (LDB) algorithm using common spatial patterns (CSP) projection as transform function is proposed for automatic trial segmentation. CSP is also used for feature extraction following trial segmentation. This new technique also allows to obtain a more accurate picture of the most relevant temporal–spatial points in the EEG during the MI. The results are compared with other standard temporal segmentation techniques such as sliding window and LDB based on the local cosine transform (LCT)

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Neuro-Fuzzy Prediction for Brain-Computer Interface Applications

    Get PDF

    Online Covariate Shift Detection based Adaptive Brain-Computer Interface to Trigger Hand Exoskeleton Feedback for Neuro-Rehabilitation

    Get PDF
    A major issue in electroencephalogram (EEG) based brain-computer interfaces (BCIs) is the intrinsic non-stationarities in the brain waves, which may degrade the performance of the classifier, while transitioning from calibration to feedback generation phase. The non-stationary nature of the EEG data may cause its input probability distribution to vary over time, which often appear as a covariate shift. To adapt to the covariate shift, we had proposed an adaptive learning method in our previous work and tested it on offline standard datasets. This paper presents an online BCI system using previously developed covariate shift detection (CSD)-based adaptive classifier to discriminate between mental tasks and generate neurofeedback in the form of visual and exoskeleton motion. The CSD test helps prevent unnecessary retraining of the classifier. The feasibility of the developed online-BCI system was first tested on 10 healthy individuals, and then on 10 stroke patients having hand disability. A comparison of the proposed online CSD-based adaptive classifier with conventional non-adaptive classifier has shown a significantly (p<0.01) higher classification accuracy in both the cases of healthy and patient groups. The results demonstrate that the online CSD-based adaptive BCI system is superior to the non-adaptive BCI system and it is feasible to be used for actuating hand exoskeleton for the stroke-rehabilitation applications

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    A Multi-Modal, Modified-Feedback and Self-Paced Brain-Computer Interface (BCI) to Control an Embodied Avatar's Gait

    Full text link
    Brain-computer interfaces (BCI) have been used to control the gait of a virtual self-avatar with the aim of being used in gait rehabilitation. A BCI decodes the brain signals representing a desire to do something and transforms them into a control command for controlling external devices. The feelings described by the participants when they control a self-avatar in an immersive virtual environment (VE) demonstrate that humans can be embodied in the surrogate body of an avatar (ownership illusion). It has recently been shown that inducing the ownership illusion and then manipulating the movements of one’s self-avatar can lead to compensatory motor control strategies. In order to maximize this effect, there is a need for a method that measures and monitors embodiment levels of participants immersed in virtual reality (VR) to induce and maintain a strong ownership illusion. This is particularly true given that reaching a high level of both BCI performance and embodiment are inter-connected. To reach one of them, the second must be reached as well. Some limitations of many existing systems hinder their adoption for neurorehabilitation: 1- some use motor imagery (MI) of movements other than gait; 2- most systems allow the user to take single steps or to walk but do not allow both, which prevents users from progressing from steps to gait; 3- most of them function in a single BCI mode (cue-paced or self-paced), which prevents users from progressing from machine-dependent to machine-independent walking. Overcoming the aforementioned limitations can be done by combining different control modes and options in one single system. However, this would have a negative impact on BCI performance, therefore diminishing its usefulness as a potential rehabilitation tool. In this case, there will be a need to enhance BCI performance. For such purpose, many techniques have been used in the literature, such as providing modified feedback (whereby the presented feedback is not consistent with the user’s MI), sequential training (recalibrating the classifier as more data becomes available). This thesis was developed over 3 studies. The objective in study 1 was to investigate the possibility of measuring the level of embodiment of an immersive self-avatar, during the performing, observing and imagining of gait, using electroencephalogram (EEG) techniques, by presenting visual feedback that conflicts with the desired movement of embodied participants. The objective of study 2 was to develop and validate a BCI to control single steps and forward walking of an immersive virtual reality (VR) self-avatar, using mental imagery of these actions, in cue-paced and self-paced modes. Different performance enhancement strategies were implemented to increase BCI performance. The data of these two studies were then used in study 3 to construct a generic classifier that could eliminate offline calibration for future users and shorten training time. Twenty different healthy participants took part in studies 1 and 2. In study 1, participants wore an EEG cap and motion capture markers, with an avatar displayed in a head-mounted display (HMD) from a first-person perspective (1PP). They were cued to either perform, watch or imagine a single step forward or to initiate walking on a treadmill. For some of the trials, the avatar took a step with the contralateral limb or stopped walking before the participant stopped (modified feedback). In study 2, participants completed a 4-day sequential training to control the gait of an avatar in both BCI modes. In cue-paced mode, they were cued to imagine a single step forward, using their right or left foot, or to walk forward. In the self-paced mode, they were instructed to reach a target using the MI of multiple steps (switch control mode) or maintaining the MI of forward walking (continuous control mode). The avatar moved as a response to two calibrated regularized linear discriminant analysis (RLDA) classifiers that used the μ power spectral density (PSD) over the foot area of the motor cortex as features. The classifiers were retrained after every session. During the training, and for some of the trials, positive modified feedback was presented to half of the participants, where the avatar moved correctly regardless of the participant’s real performance. In both studies, the participants’ subjective experience was analyzed using a questionnaire. Results of study 1 show that subjective levels of embodiment correlate strongly with the power differences of the event-related synchronization (ERS) within the μ frequency band, and over the motor and pre-motor cortices between the modified and regular feedback trials. Results of study 2 show that all participants were able to operate the cued-paced BCI and the selfpaced BCI in both modes. For the cue-paced BCI, the average offline performance (classification rate) on day 1 was 67±6.1% and 86±6.1% on day 3, showing that the recalibration of the classifiers enhanced the offline performance of the BCI (p < 0.01). The average online performance was 85.9±8.4% for the modified feedback group (77-97%) versus 75% for the non-modified feedback group. For self-paced BCI, the average performance was 83% at switch control and 92% at continuous control mode, with a maximum of 12 seconds of control. Modified feedback enhanced BCI performances (p =0.001). Finally, results of study 3 show that the constructed generic models performed as well as models obtained from participant-specific offline data. The results show that there it is possible to design a participant-independent zero-training BCI.Les interfaces cerveau-ordinateur (ICO) ont été utilisées pour contrôler la marche d'un égo-avatar virtuel dans le but d'être utilisées dans la réadaptation de la marche. Une ICO décode les signaux du cerveau représentant un désir de faire produire un mouvement et les transforme en une commande de contrôle pour contrôler des appareils externes. Les sentiments décrits par les participants lorsqu'ils contrôlent un égo-avatar dans un environnement virtuel immersif démontrent que les humains peuvent être incarnés dans un corps d'un avatar (illusion de propriété). Il a été récemment démontré que provoquer l’illusion de propriété puis manipuler les mouvements de l’égo-avatar peut conduire à des stratégies de contrôle moteur compensatoire. Afin de maximiser cet effet, il existe un besoin d'une méthode qui mesure et surveille les niveaux d’incarnation des participants immergés dans la réalité virtuelle (RV) pour induire et maintenir une forte illusion de propriété. D'autre part, atteindre un niveau élevé de performances (taux de classification) ICO et d’incarnation est interconnecté. Pour atteindre l'un d'eux, le second doit également être atteint. Certaines limitations de plusieurs de ces systèmes entravent leur adoption pour la neuroréhabilitation: 1- certains utilisent l'imagerie motrice (IM) des mouvements autres que la marche; 2- la plupart des systèmes permettent à l'utilisateur de faire des pas simples ou de marcher mais pas les deux, ce qui ne permet pas à un utilisateur de passer des pas à la marche; 3- la plupart fonctionnent en un seul mode d’ICO, rythmé (cue-paced) ou auto-rythmé (self-paced). Surmonter les limitations susmentionnées peut être fait en combinant différents modes et options de commande dans un seul système. Cependant, cela aurait un impact négatif sur les performances de l’ICO, diminuant ainsi son utilité en tant qu'outil potentiel de réhabilitation. Dans ce cas, il sera nécessaire d'améliorer les performances des ICO. À cette fin, de nombreuses techniques ont été utilisées dans la littérature, telles que la rétroaction modifiée, le recalibrage du classificateur et l'utilisation d'un classificateur générique. Le projet de cette thèse a été réalisé en 3 études, avec objectif d'étudier dans l'étude 1, la possibilité de mesurer le niveau d'incarnation d'un égo-avatar immersif, lors de l'exécution, de l'observation et de l'imagination de la marche, à l'aide des techniques encéphalogramme (EEG), en présentant une rétroaction visuelle qui entre en conflit avec la commande du contrôle moteur des sujets incarnés. L'objectif de l'étude 2 était de développer un BCI pour contrôler les pas et la marche vers l’avant d'un égo-avatar dans la réalité virtuelle immersive, en utilisant l'imagerie motrice de ces actions, dans des modes rythmés et auto-rythmés. Différentes stratégies d'amélioration des performances ont été mises en œuvre pour augmenter la performance (taux de classification) de l’ICO. Les données de ces deux études ont ensuite été utilisées dans l'étude 3 pour construire des classificateurs génériques qui pourraient éliminer la calibration hors ligne pour les futurs utilisateurs et raccourcir le temps de formation. Vingt participants sains différents ont participé aux études 1 et 2. Dans l'étude 1, les participants portaient un casque EEG et des marqueurs de capture de mouvement, avec un avatar affiché dans un casque de RV du point de vue de la première personne (1PP). Ils ont été invités à performer, à regarder ou à imaginer un seul pas en avant ou la marche vers l’avant (pour quelques secondes) sur le tapis roulant. Pour certains essais, l'avatar a fait un pas avec le membre controlatéral ou a arrêté de marcher avant que le participant ne s'arrête (rétroaction modifiée). Dans l'étude 2, les participants ont participé à un entrainement séquentiel de 4 jours pour contrôler la marche d'un avatar dans les deux modes de l’ICO. En mode rythmé, ils ont imaginé un seul pas en avant, en utilisant leur pied droit ou gauche, ou la marche vers l’avant . En mode auto-rythmé, il leur a été demandé d'atteindre une cible en utilisant l'imagerie motrice (IM) de plusieurs pas (mode de contrôle intermittent) ou en maintenir l'IM de marche vers l’avant (mode de contrôle continu). L'avatar s'est déplacé en réponse à deux classificateurs ‘Regularized Linear Discriminant Analysis’ (RLDA) calibrés qui utilisaient comme caractéristiques la densité spectrale de puissance (Power Spectral Density; PSD) des bandes de fréquences µ (8-12 Hz) sur la zone du pied du cortex moteur. Les classificateurs ont été recalibrés après chaque session. Au cours de l’entrainement et pour certains des essais, une rétroaction modifiée positive a été présentée à la moitié des participants, où l'avatar s'est déplacé correctement quelle que soit la performance réelle du participant. Dans les deux études, l'expérience subjective des participants a été analysée à l'aide d'un questionnaire. Les résultats de l'étude 1 montrent que les niveaux subjectifs d’incarnation sont fortement corrélés à la différence de la puissance de la synchronisation liée à l’événement (Event-Related Synchronization; ERS) sur la bande de fréquence μ et sur le cortex moteur et prémoteur entre les essais de rétroaction modifiés et réguliers. L'étude 2 a montré que tous les participants étaient capables d’utiliser le BCI rythmé et auto-rythmé dans les deux modes. Pour le BCI rythmé, la performance hors ligne moyenne au jour 1 était de 67±6,1% et 86±6,1% au jour 3, ce qui montre que le recalibrage des classificateurs a amélioré la performance hors ligne du BCI (p <0,01). La performance en ligne moyenne était de 85,9±8,4% pour le groupe de rétroaction modifié (77-97%) contre 75% pour le groupe de rétroaction non modifié. Pour le BCI auto-rythmé, la performance moyenne était de 83% en commande de commutateur et de 92% en mode de commande continue, avec un maximum de 12 secondes de commande. Les performances de l’ICO ont été améliorées par la rétroaction modifiée (p = 0,001). Enfin, les résultats de l'étude 3 montrent que pour la classification des initialisations des pas et de la marche, il a été possible de construire des modèles génériques à partir de données hors ligne spécifiques aux participants. Les résultats montrent la possibilité de concevoir une ICO ne nécessitant aucun entraînement spécifique au participant

    Enhancing brain-computer interfacing through advanced independent component analysis techniques

    No full text
    A Brain-computer interface (BCI) is a direct communication system between a brain and an external device in which messages or commands sent by an individual do not pass through the brain’s normal output pathways but is detected through brain signals. Some severe motor impairments, such as Amyothrophic Lateral Sclerosis, head trauma, spinal injuries and other diseases may cause the patients to lose their muscle control and become unable to communicate with the outside environment. Currently no effective cure or treatment has yet been found for these diseases. Therefore using a BCI system to rebuild the communication pathway becomes a possible alternative solution. Among different types of BCIs, an electroencephalogram (EEG) based BCI is becoming a popular system due to EEG’s fine temporal resolution, ease of use, portability and low set-up cost. However EEG’s susceptibility to noise is a major issue to develop a robust BCI. Signal processing techniques such as coherent averaging, filtering, FFT and AR modelling, etc. are used to reduce the noise and extract components of interest. However these methods process the data on the observed mixture domain which mixes components of interest and noise. Such a limitation means that extracted EEG signals possibly still contain the noise residue or coarsely that the removed noise also contains part of EEG signals embedded. Independent Component Analysis (ICA), a Blind Source Separation (BSS) technique, is able to extract relevant information within noisy signals and separate the fundamental sources into the independent components (ICs). The most common assumption of ICA method is that the source signals are unknown and statistically independent. Through this assumption, ICA is able to recover the source signals. Since the ICA concepts appeared in the fields of neural networks and signal processing in the 1980s, many ICA applications in telecommunications, biomedical data analysis, feature extraction, speech separation, time-series analysis and data mining have been reported in the literature. In this thesis several ICA techniques are proposed to optimize two major issues for BCI applications: reducing the recording time needed in order to speed up the signal processing and reducing the number of recording channels whilst improving the final classification performance or at least with it remaining the same as the current performance. These will make BCI a more practical prospect for everyday use. This thesis first defines BCI and the diverse BCI models based on different control patterns. After the general idea of ICA is introduced along with some modifications to ICA, several new ICA approaches are proposed. The practical work in this thesis starts with the preliminary analyses on the Southampton BCI pilot datasets starting with basic and then advanced signal processing techniques. The proposed ICA techniques are then presented using a multi-channel event related potential (ERP) based BCI. Next, the ICA algorithm is applied to a multi-channel spontaneous activity based BCI. The final ICA approach aims to examine the possibility of using ICA based on just one or a few channel recordings on an ERP based BCI. The novel ICA approaches for BCI systems presented in this thesis show that ICA is able to accurately and repeatedly extract the relevant information buried within noisy signals and the signal quality is enhanced so that even a simple classifier can achieve good classification accuracy. In the ERP based BCI application, after multichannel ICA the data just applied to eight averages/epochs can achieve 83.9% classification accuracy whilst the data by coherent averaging can reach only 32.3% accuracy. In the spontaneous activity based BCI, the use of the multi-channel ICA algorithm can effectively extract discriminatory information from two types of singletrial EEG data. The classification accuracy is improved by about 25%, on average, compared to the performance on the unpreprocessed data. The single channel ICA technique on the ERP based BCI produces much better results than results using the lowpass filter. Whereas the appropriate number of averages improves the signal to noise rate of P300 activities which helps to achieve a better classification. These advantages will lead to a reliable and practical BCI for use outside of the clinical laboratory
    corecore