404 research outputs found

    Ensemble approach for detection of depression using EEG features

    Get PDF
    Depression is a public health issue which severely affects one's well being and cause negative social and economic effect for society. To rise awareness of these problems, this publication aims to determine if long lasting effects of depression can be determined from electoencephalographic (EEG) signals. The article contains accuracy comparison for SVM, LDA, NB, kNN and D3 binary classifiers which were trained using linear (relative band powers, APV, SASI) and non-linear (HFD, LZC, DFA) EEG features. The age and gender matched dataset consisted of 10 healthy subjects and 10 subjects with depression diagnosis at some point in their lifetime. Several of the proposed feature selection and classifier combinations reached accuracy of 90% where all models where evaluated using 10-fold cross validation and averaged over 100 repetitions with random sample permutations.Comment: 8 pages, 2 figure

    EEG based Major Depressive disorder and Bipolar disorder detection using Neural Networks: A review

    Full text link
    Mental disorders represent critical public health challenges as they are leading contributors to the global burden of disease and intensely influence social and financial welfare of individuals. The present comprehensive review concentrate on the two mental disorders: Major depressive Disorder (MDD) and Bipolar Disorder (BD) with noteworthy publications during the last ten years. There is a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers. Electroencephalography (EEG) signals could offer a rich signature for MDD and BD and then they could improve understanding of pathophysiological mechanisms underling these mental disorders. In this review, we focus on the literature works adopting neural networks fed by EEG signals. Among those studies using EEG and neural networks, we have discussed a variety of EEG based protocols, biomarkers and public datasets for depression and bipolar disorder detection. We conclude with a discussion and valuable recommendations that will help to improve the reliability of developed models and for more accurate and more deterministic computational intelligence based systems in psychiatry. This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals.Comment: 29 pages,2 figures and 18 Table

    Sensor-AssistedWeighted Average Ensemble Model for Detecting Major Depressive Disorder

    Get PDF
    The present methods of diagnosing depression are entirely dependent on self-report ratings or clinical interviews. Those traditional methods are subjective, where the individual may or may not be answering genuinely to questions. In this paper, the data has been collected using self-report ratings and also using electronic smartwatches. This study aims to develop a weighted average ensemble machine learning model to predict major depressive disorder (MDD) with superior accuracy. The data has been pre-processed and the essential features have been selected using a correlation-based feature selection method. With the selected features, machine learning approaches such as Logistic Regression, Random Forest, and the proposedWeighted Average Ensemble Model are applied. Further, for assessing the performance of the proposed model, the Area under the Receiver Optimization Characteristic Curves has been used. The results demonstrate that the proposed Weighted Average Ensemble model performs with better accuracy than the Logistic Regression and the Random Forest approaches

    Intelligent Advanced User Interfaces for Monitoring Mental Health Wellbeing

    Get PDF
    It has become pressing to develop objective and automatic measurements integrated in intelligent diagnostic tools for detecting and monitoring depressive states and enabling an increased precision of diagnoses and clinical decision-makings. The challenge is to exploit behavioral and physiological biomarkers and develop Artificial Intelligent (AI) models able to extract information from a complex combination of signals considered key symptoms. The proposed AI models should be able to help clinicians to rapidly formulate accurate diagnoses and suggest personalized intervention plans ranging from coaching activities (exploiting for example serious games), support networks (via chats, or social networks), and alerts to caregivers, doctors, and care control centers, reducing the considerable burden on national health care institutions in terms of medical, and social costs associated to depression cares

    The Pros and Cons of Using Machine Learning and Interpretable Machine Learning Methods in psychiatry detection applications, specifically depression disorder: A Brief Review

    Full text link
    The COVID-19 pandemic has forced many people to limit their social activities, which has resulted in a rise in mental illnesses, particularly depression. To diagnose these illnesses with accuracy and speed, and prevent severe outcomes such as suicide, the use of machine learning has become increasingly important. Additionally, to provide precise and understandable diagnoses for better treatment, AI scientists and researchers must develop interpretable AI-based solutions. This article provides an overview of relevant articles in the field of machine learning and interpretable AI, which helps to understand the advantages and disadvantages of using AI in psychiatry disorder detection applications.Comment: 12 page
    • …
    corecore