126 research outputs found

    Detecting and classifying three different hand movement types through electroencephalography recordings for neurorehabilitation

    Get PDF
    Brain–computer interfaces can be used for motor substitution and recovery; therefore, detection and classification of movement intention are crucial for optimal control. In this study, palmar, lateral and pinch grasps were differentiated from the idle state and classified from single-trial EEG using only information prior to the movement onset. Fourteen healthy subjects performed the three grasps 100 times, while EEG was recorded from 25 electrodes. Temporal and spectral features were extracted from each electrode, and feature reduction was performed using sequential forward selection (SFS) and principal component analysis (PCA). The detection problem was investigated as the ability to discriminate between movement preparation and the idle state. Furthermore, all task pairs and the three movements together were classified. The best detection performance across movements (79 ± 8 %) was obtained by combining temporal and spectral features. The best movement–movement discrimination was obtained using spectral features: 76 ± 9 % (2-class) and 63 ± 10 % (3-class). For movement detection and discrimination, the performance was similar across grasp types and task pairs; SFS outperformed PCA. The results show it is feasible to detect different grasps and classify the distinct movements using only information prior to the movement onset, which may enable brain–computer interface-based neurorehabilitation of upper limb function through Hebbian learning mechanisms

    Development of a hybrid robotic system based on an adaptive and associative assistance for rehabilitation of reaching movement after stroke

    Get PDF
    Stroke causes irreversible neurological damage. Depending on the location and the size of this brain injury, different body functions could result affected. One of the most common consequences is motor impairments. The level of motor impairment affectation varies between post-stroke subjects, but often, it hampers the execution of most activities of daily living. Consequently, the quality of life of the stroke population is severely decreased. The rehabilitation of the upper-limb motor functions has gained special attention in the scientific community due the poor reported prognosis of post-stroke patients for recovering normal upper-extremity function after standard rehabilitation therapy. Driven by the advance of technology and the design of new rehabilitation methods, the use of robot devices, functional electrical stimulation and brain-computer interfaces as a neuromodulation system is proposed as a novel and promising rehabilitation tools. Although the uses of these technologies present potential benefits with respect to standard rehabilitation methods, there still are some milestones to be addressed for the consolidation of these methods and techniques in clinical settings. Mentioned evidences reflect the motivation for this dissertation. This thesis presents the development and validation of a hybrid robotic system based on an adaptive and associative assistance for rehabilitation of reaching movements in post-stroke subjects. The hybrid concept refers the combined use of robotic devices with functional electrical stimulation. Adaptive feature states a tailored assistance according to the users’ motor residual capabilities, while the associative term denotes a precise pairing between the users’ motor intent and the peripheral hybrid assistance. The development of the hybrid platform comprised the following tasks: 1. The identification of the current challenges for hybrid robotic system, considering twofold perspectives: technological and clinical. The hybrid systems submitted in literature were critically reviewed for such purpose. These identified features will lead the subsequent development and method framed in this work. 2. The development and validation of a hybrid robotic system, combining a mechanical exoskeleton with functional electrical stimulation to assist the execution of functional reaching movements. Several subsystems are integrated within the hybrid platform, which interact each other to cooperatively complement the rehabilitation task. Complementary, the implementation of a controller based on functional electrical stimulation to dynamically adjust the level of assistance is addressed. The controller is conceived to tackle one of the main limitations when using electrical stimulation, i.e. the highly nonlinear and time-varying muscle response. An experimental procedure was conducted with healthy and post-stroke patients to corroborate the technical feasibility and the usability evaluation of the system. 3. The implementation of an associative strategy within the hybrid platform. Three different strategies based on electroencephalography and electromyography signals were analytically compared. The main idea is to provide a precise temporal association between the hybrid assistance delivered at the periphery (arm muscles) and the users’ own intention to move and to configure a feasible clinical setup to be use in real rehabilitation scenarios. 4. Carry out a comprehensive pilot clinical intervention considering a small cohort of patient with post-stroke patients to evaluate the different proposed concepts and assess the feasibility of using the hybrid system in rehabilitation settings. In summary, the works here presented prove the feasibility of using the hybrid robotic system as a rehabilitative tool with post-stroke subjects. Moreover, it is demonstrated the adaptive controller is able to adjust the level of assistance to achieve successful tracking movement with the affected arm. Remarkably, the accurate association in time between motor cortex activation, represented through the motor-related cortical potential measured with electroencephalography, and the supplied hybrid assistance during the execution of functional (multidegree of freedom) reaching movement facilitate distributed cortical plasticity. These results encourage the validation of the overall hybrid concept in a large clinical trial including an increased number of patients with a control group, in order to achieve more robust clinical results and confirm the presented herein.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Ramón Ceres Ruiz.- Secretario: Luis Enrique Moreno Lorente.- Vocal: Antonio Olivier

    EEG Classification of Different Imaginary Movements within the Same Limb

    Get PDF
    The task of discriminating the motor imagery of different movements within the same limb using electroencephalography (EEG) signals is challenging because these imaginary movements have close spatial representations on the motor cortex area. There is, however, a pressing need to succeed in this task. The reason is that the ability to classify different same-limb imaginary movements could increase the number of control dimensions of a brain-computer interface (BCI). In this paper, we propose a 3-class BCI system that discriminates EEG signals corresponding to rest, imaginary grasp movements, and imaginary elbow movements. Besides, the differences between simple motor imagery and goal-oriented motor imagery in terms of their topographical distributions and classification accuracies are also being investigated. To the best of our knowledge, both problems have not been explored in the literature. Based on the EEG data recorded from 12 able-bodied individuals, we have demonstrated that same-limb motor imagery classification is possible. For the binary classification of imaginary grasp and elbow (goal-oriented) movements, the average accuracy achieved is 66.9%. For the 3-class problem of discriminating rest against imaginary grasp and elbow movements, the average classification accuracy achieved is 60.7%, which is greater than the random classification accuracy of 33.3%. Our results also show that goal-oriented imaginary elbow movements lead to a better classification performance compared to simple imaginary elbow movements. This proposed BCI system could potentially be used in controlling a robotic rehabilitation system, which can assist stroke patients in performing task-specific exercises

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    Enhancement of Robot-Assisted Rehabilitation Outcomes of Post-Stroke Patients Using Movement-Related Cortical Potential

    Get PDF
    Post-stroke rehabilitation is essential for stroke survivors to help them regain independence and to improve their quality of life. Among various rehabilitation strategies, robot-assisted rehabilitation is an efficient method that is utilized more and more in clinical practice for motor recovery of post-stroke patients. However, excessive assistance from robotic devices during rehabilitation sessions can make patients perform motor training passively with minimal outcome. Towards the development of an efficient rehabilitation strategy, it is necessary to ensure the active participation of subjects during training sessions. This thesis uses the Electroencephalography (EEG) signal to extract the Movement-Related Cortical Potential (MRCP) pattern to be used as an indicator of the active engagement of stroke patients during rehabilitation training sessions. The MRCP pattern is also utilized in designing an adaptive rehabilitation training strategy that maximizes patients’ engagement. This project focuses on the hand motor recovery of post-stroke patients using the AMADEO rehabilitation device (Tyromotion GmbH, Austria). AMADEO is specifically developed for patients with fingers and hand motor deficits. The variations in brain activity are analyzed by extracting the MRCP pattern from the acquired EEG data during training sessions. Whereas, physical improvement in hand motor abilities is determined by two methods. One is clinical tests namely Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) which include FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand movements’ tests. The other method is the measurement of hand-kinematic parameters using the AMADEO assessment tool which contains hand strength measurements during flexion (force-flexion), and extension (force-extension), and Hand Range of Movement (HROM)

    Development of Digital Control Systems for Wearable Mechatronic Devices: Applications in Musculoskeletal Rehabilitation of the Upper Limb

    Get PDF
    The potential for wearable mechatronic systems to assist with musculoskeletal rehabilitation of the upper limb has grown with the technology. One limiting factor to realizing the benefits of these devices as motion therapy tools is within the development of digital control solutions. Despite many device prototypes and research efforts in the surrounding fields, there are a lack of requirements, details, assessments, and comparisons of control system characteristics, components, and architectures in the literature. Pairing this with the complexity of humans, the devices, and their interactions makes it a difficult task for control system developers to determine the best solution for their desired applications. The objective of this thesis is to develop, evaluate, and compare control system solutions that are capable of tracking motion through the control of wearable mechatronic devices. Due to the immaturity of these devices, the design, implementation, and testing processes for the control systems is not well established. In order to improve the efficiency and effectiveness of these processes, control system development and evaluation tools have been proposed. The Wearable Mechatronics-Enabled Control Software framework was developed to enable the implementation and comparison of different control software solutions presented in the literature. This framework reduces the amount of restructuring and modification required to complete these development tasks. An integration testing protocol was developed to isolate different aspects of the control systems during testing. A metric suite is proposed that expands on the existing literature and allows for the measurement of more control characteristics. Together, these tools were used ii ABSTRACT iii to developed, evaluate, and compare control system solutions. Using the developed control systems, a series of experiments were performed that involved tracking elbow motion using wearable mechatronic elbow devices. The accuracy and repeatability of the motion tracking performances, the adaptability of the control models, and the resource utilization of the digital systems were measured during these experiments. Statistical analysis was performed on these metrics to compare between experimental factors. The results of the tracking performances show some of the highest accuracies for elbow motion tracking with these devices. The statistical analysis revealed many factors that significantly impact the tracking performance, such as visual feedback, motion training, constrained motion, motion models, motion inputs, actuation components, and control outputs. Furthermore, the completion of the experiments resulted in three first-time studies, such as the comparison of muscle activation models and the quantification of control system task timing and data storage needs. The successes of these experiments highlight that accurate motion tracking, using biological signals of the user, is possible, but that many more efforts are needed to obtain control solutions that are robust to variations in the motion and characteristics of the user. To guide the future development of these control systems, a national survey was conducted of therapists regarding their patient data collection and analysis methods. From the results of this survey, a series of requirements for software systems, that allow therapists to interact with the control systems of these devices, were collected. Increasing the participation of therapists in the development processes of wearable assistive devices will help to produce better requirements for developers. This will allow the customization of control systems for specific therapies and patient characteristics, which will increase the benefit and adoption rate of these devices within musculoskeletal rehabilitation programs

    EEG and ECoG features for Brain Computer Interface in Stroke Rehabilitation

    Get PDF
    The ability of non-invasive Brain-Computer Interface (BCI) to control an exoskeleton was used for motor rehabilitation in stroke patients or as an assistive device for the paralyzed. However, there is still a need to create a more reliable BCI that could be used to control several degrees of Freedom (DoFs) that could improve rehabilitation results. Decoding different movements from the same limb, high accuracy and reliability are some of the main difficulties when using conventional EEG-based BCIs and the challenges we tackled in this thesis. In this PhD thesis, we investigated that the classification of several functional hand reaching movements from the same limb using EEG is possible with acceptable accuracy. Moreover, we investigated how the recalibration could affect the classification results. For this reason, we tested the recalibration in each multi-class decoding for within session, recalibrated between-sessions, and between sessions. It was shown the great influence of recalibrating the generated classifier with data from the current session to improve stability and reliability of the decoding. Moreover, we used a multiclass extension of the Filter Bank Common Spatial Patterns (FBCSP) to improve the decoding accuracy based on features and compared it to our previous study using CSP. Sensorimotor-rhythm-based BCI systems have been used within the same frequency ranges as a way to influence brain plasticity or controlling external devices. However, neural oscillations have shown to synchronize activity according to motor and cognitive functions. For this reason, the existence of cross-frequency interactions produces oscillations with different frequencies in neural networks. In this PhD, we investigated for the first time the existence of cross-frequency coupling during rest and movement using ECoG in chronic stroke patients. We found that there is an exaggerated phase-amplitude coupling between the phase of alpha frequency and the amplitude of gamma frequency, which can be used as feature or target for neurofeedback interventions using BCIs. This coupling has been also reported in another neurological disorder affecting motor function (Parkinson and dystonia) but, to date, it has not been investigated in stroke patients. This finding might change the future design of assistive or therapeuthic BCI systems for motor restoration in stroke patients

    Development of EEG-based technologies for the characterization and treatment of neurological diseases affecting the motor function

    Get PDF
    This thesis presents a set of studies applying signal processing and data mining techniques in real-time working systems to register, characterize and condition the movement-related cortical activity of healthy subjects and of patients with neurological disorders affecting the motor function. Patients with two of the most widespread neurological affections impairing the motor function are considered here: patients with essential tremor and patients who have suffered a cerebro-vascular accident. The different chapters in the presented thesis show results regarding the normal cortical activity associated with the planning and execution of motor actions with the upper-limb, and the pathological activity related to the patients' motor dysfunction (measurable with muscle electrodes or movement sensors). The initial chapters of the book present i) a revision of the basic concepts regarding the role of the cerebral cortex in the motor control and the way in which the electroencephalographic activity allows its analysis and conditioning, ii) a study on the cortico-muscular interaction at the tremor frequency in patients with essential tremor under the effects of a drug reducing their tremor, and finally iii) a study based on evolutionary algorithms that aims to identify cortical patterns related to the planning of a number of motor tasks performed with a single arm. In the second half of the thesis book, two brain-computer interface systems to be used in rehabilitation scenarios with essential tremor patients and with patients with a stroke are proposed. In the first system, the electroencephalographic activity is used to anticipate voluntary movement actions, and this information is integrated in a multimodal platform estimating and suppressing the pathological tremors. In the second case, a conditioning paradigm for stroke patients based on the identification of the motor intention with temporal precision is presented and tested with a cohort of four patients along a month during which the patients undergo eight intervention sessions. The presented thesis has yielded advances from both the technological and the scientific points of view in all studies proposed. The main contributions from the technological point of view are: ¿ The design of an integrated upper-limb platform working in real-time. The platform was designed to acquire information from different types of noninvasive sensors (EEG, EMG and gyroscopic sensors) characterizing the planning and execution of voluntary movements. The platform was also capable of processing online the acquired data and generating an electrical feedback. ¿ The development of signal processing and classifying techniques adapted to the kind of signal recorded in the two kinds of patients considered in this thesis (patients with essential tremor and patients with a stroke) and to the requirements of online processing and real-time single-trial function desired for BCI applications. Especially in this regard, an original methodology to detect onsets of voluntary movements using slow cortical potentials and cortical rhythms has been presented. ¿ The design and validation in real-time of asynchronous BCI systems using motor planning EEG segments to anticipate or detect when patients begin a voluntary movement with the upper-limb. ¿ The proof of concept of the advantages of an EEG system integrated in a multimodal human-robot interface architecture that constitutes the first multimodal interface using the combined acquisition of EEG, EMG and gyroscopic data, which allows the concurrent characterization of different parts of the body associated with the execution of a movement. The main scientific contributions of this thesis are: ¿ The study of the EEG-based anticipation of voluntary movements presented in Chapter 5 of the thesis was the first demonstration (to the author's knowledge) of the capacity of the EEG signal to provide reliable movement predictions based on single-trial classification of online data of healthy subjects and ET patients. This study also provides, for the first time, the results of a BCI system tested in ET patients and it represents an original approach to BCI applications for this group of patients. ¿ It has been presented the first neurophysiological study using EEG and EMG data to analyze the effects of a drug on cortical activity and tremors of patients with ET. In addition, the obtained results have shown for the first time that a significant correlation exists between the dynamics of specific cortical oscillations and pathological tremor manifestation as a consequence of the drug effects. ¿ It has been proposed for the first time an experiment to inspect whether the EEG signal carries enough information to classify up to seven different tasks performed with a single limb. Both the methodology applied and the validation procedure are also innovative in this sort of studies. ¿ It has been demonstrated for the first time the relevance of combining different cortical sources of information (such as BP and ERD) to estimate the initiation of voluntary movements with the upper-limb. In this line, special relevance may be given to the positive results achieved with stroke patients, improving the results presented by similar previous EEG-based studies by other research groups. It has also been proposed for the first time an upper-limb intervention protocol for stroke patients using BP and ERD patterns to provide proprioceptive feedback tightly associated with the patients' expectations of movement. The effects of the proposed intervention have been studied with a small group of patients

    Design and analysis of a brain-computer interface-based robotic rehabilitation system

    Get PDF
    In this thesis, we have investigated the effect of brain-computer interfaces (BCI) which enable direct communication between a brain and a computer, to increase the patient's active involvement to his/her task in the robotic rehabilitation therapy. We have designed several experimental paradigms using electroencephalography (EEG) based BCIs which can be used to extract information about arm movement imagery in the context of robotic rehabilitation experiments. In particular, we propose a protocol that extracts and uses information about the level of intention of the subject to control the robot continuously throughout a rehabilitation experiment. In this context we have developed and implemented EEG signal processing, learning and classiffication algorithms for o ine and online decision-making. We have used di erent types of controlling methods over the robotic system and examined the potential impact of BCI on rehabilitation, the effect of robotic haptic feedback on BCI, and information contained in EEG about the rehabilitation process. Our results verify that the use of haptic feedback through robotic movement improves BCI performance. We also observe that using BCI continuously in the experiment rather than only to trigger robotic movement may be preferable. Finally, our results indicate stronger motor imagery activity in BCI-based experiments over conventional experiments in which movement is performed by the robot without the subject's involvement
    • …
    corecore