73 research outputs found

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    A System for True and False Memory Prediction Based on 2D and 3D Educational Contents and EEG Brain Signals

    Get PDF
    We studied the impact of 2D and 3D educational contents on learning and memory recall using electroencephalography (EEG) brain signals. For this purpose, we adopted a classification approach that predicts true and false memories in case of both short term memory (STM) and long term memory (LTM) and helps to decide whether there is a difference between the impact of 2D and 3D educational contents. In this approach, EEG brain signals are converted into topomaps and then discriminative features are extracted from them and finally support vector machine (SVM) which is employed to predict brain states. For data collection, half of sixty-eight healthy individuals watched the learning material in 2D format whereas the rest watched the same material in 3D format. After learning task, memory recall tasks were performed after 30 minutes (STM) and two months (LTM), and EEG signals were recorded. In case of STM, 97.5% prediction accuracy was achieved for 3D and 96.6% for 2D and, in case of LTM, it was 100% for both 2D and 3D. The statistical analysis of the results suggested that for learning and memory recall both 2D and 3D materials do not have much difference in case of STM and LTM

    EEG representation using multi-instance framework on the manifold of symmetric positive definite matrices

    Get PDF
    The generalization and robustness of an electroencephalogram (EEG)-based system are crucial requirements in actual practices. To reach these goals, we propose a new EEG representation that provides a more realistic view of brain functionality by applying multi-instance (MI) framework to consider the non-stationarity of the EEG signal. In this representation, the non-stationarity of EEG is considered by describing the signal as a bag of relevant and irrelevant concepts. The concepts are provided by a robust representation of homogeneous segments of EEG signal using spatial covariance matrices. Due to the nonlinear geometry of the space of covariance matrices, we determine the boundaries of the homogeneous segments based on adaptive segmentation of the signal in a Riemannian framework. Each subject is described as a bag of covariance matrices of homogeneous segments and the bag-level discriminative information is used for classification. To evaluate the performance of the proposed approach, we examine it in a cultural neuroscience application for classification Iranian versus Swiss normal subjects to discover if strongly differing cultures can result in distinguishing patterns in brain electrical activity of the subjects. To confirm the effectiveness of the proposed representation, we also evaluate the proposed representation in EEG-based mental disorder diagnosis application for Attention Deficit Hyperactivity Disorder/Bipolar Mood Disorder, Schizophrenia/ normal, and Major Depression Disorder/normal diagnosis applications. Experimental results confirm the superiority of the proposed approach, which is gained due to the robustness of covariance descriptor, the effectiveness of Riemannian geometry, the benefits of considering the inherent nonstationary nature of the brain by applying bag-level discriminative information, and automatic handling the artifacts
    • …
    corecore