383 research outputs found

    Applications of brain imaging methods in driving behaviour research

    Get PDF
    Applications of neuroimaging methods have substantially contributed to the scientific understanding of human factors during driving by providing a deeper insight into the neuro-cognitive aspects of driver brain. This has been achieved by conducting simulated (and occasionally, field) driving experiments while collecting driver brain signals of certain types. Here, this sector of studies is comprehensively reviewed at both macro and micro scales. Different themes of neuroimaging driving behaviour research are identified and the findings within each theme are synthesised. The surveyed literature has reported on applications of four major brain imaging methods. These include Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), Functional Near-Infrared Spectroscopy (fNIRS) and Magnetoencephalography (MEG), with the first two being the most common methods in this domain. While collecting driver fMRI signal has been particularly instrumental in studying neural correlates of intoxicated driving (e.g. alcohol or cannabis) or distracted driving, the EEG method has been predominantly utilised in relation to the efforts aiming at development of automatic fatigue/drowsiness detection systems, a topic to which the literature on neuro-ergonomics of driving particularly has shown a spike of interest within the last few years. The survey also reveals that topics such as driver brain activity in semi-automated settings or the brain activity of drivers with brain injuries or chronic neurological conditions have by contrast been investigated to a very limited extent. Further, potential topics in relation to driving behaviour are identified that could benefit from the adoption of neuroimaging methods in future studies

    Measuring working memory load effects on electrophysiological markers of attention orienting during a simulated drive

    Get PDF
    Intersection accidents result in a significant proportion of road fatalities, and attention allocation likely plays a role. Attention allocation may depend on (limited) working memory (WM) capacity. Driving is often combined with tasks increasing WM load, consequently impairing attention orienting. This study (n = 22) investigated WM load effects on event-related potentials (ERPs) related to attention orienting. A simulated driving environment allowed continuous lane-keeping measurement. Participants were asked to orient attention covertly towards the side indicated by an arrow, and to respond only to moving cars appearing on the attended side by pressing a button. WM load was manipulated using a concurrent memory task. ERPs showed typical attentional modulation (cue: contralateral negativity, LDAP; car: N1, P1, SN and P3) under low and high load conditions. With increased WM load, lane-keeping performance improved, while dual task performance degraded (memory task: increased error rate; orienting task: increased false alarms, smaller P3). Practitioner Summary: Intersection driver-support systems aim to improve traffic safety and flow. However, in-vehicle systems induce WM load, increasing the tendency to yield. Traffic flow reduces if drivers stop at inappropriate times, reducing the effectiveness of systems. Consequently, driver-support systems could include WM load measurement during driving in the development phase

    Development of a Driver Behavior Framework for Manual and Automated Control Considering Driver Cognition

    Get PDF
    As a crucial component of traffic safety, operational quality, and network performance, driver behavior has been the subject of numerous studies. However, research has focused primarily on descriptive mathematical models of the primary driving tasks (car-following, lane changing), while rarely considering the underlying human factors affecting driver behavior. This quality of existing models means that they are not generally capable of adapting to systemic changes in driving behavior. At the same time, vehicle automation, one of the most revolutionary innovations in the history of transportation, advances at a very rapid pace. This development will result in deep systemic changes in the driver role and behavior, during the unavoidable transition period towards fully automated transportation networks, which the existing descriptive models are ill equipped to predict. To achieve that, additional information about driver behavior derived from the field of cognitive sciences, and psychological constructs like cognitive workload and situational awareness, need to be integrated into driving behavior models in order to describe the driver state under various levels of automation. This research aims to fill that gap by proposing a robust driver behavior framework that takes into account human factors and can be applied to both traditional manual driving, as well as driving of vehicles with varied automation capabilities. Based on a comprehensive literature review, the study proposed an experimental methodology, and a data collection and analysis plan that can validate the behavioral framework for use in future transportation applications

    Safety roads: the analysis of driving behaviour and the effects on the infrastructural design

    Get PDF
    Road design should ensure the correct behaviour of drivers in terms of speed and level of attention. Nevertheless, in some cases users are not able to visualize the carriageway enough correctly, owing to the misled road layout or the loss of visibility. In this research, road safety management was assessed with the driving and visual behaviour of users, considering the impact of different configurations of pedestrian crossings and road signs in order to reduce accidents. Even if users focus their attention on the zebra crossing (60%) and the vertical sign (24%), 16% of them have had no perception of the pedestrian crossings. This result shows how pedestrian crossings represent critical points that could compromise the safety of vulnerable users also in relation to speed. In fact, driving behaviour highlights 50 km/h of the average speed at 100 meters before the crosswalk, which allows having a too short time to stop the vehicle in safety. Moreover, the maximum speed underlines that users drive beyond the limit imposed by the road’s rules. It is thus necessary to require the implementation of road infrastructure so as to modify the driving behaviour. Starting from the Road Safety Review, it was then possible to detect the critical issues and correlate a visual and kinematic analysis so as to intervene accurately

    Human–Machine Interface in Transport Systems: An Industrial Overview for More Extended Rail Applications

    Get PDF
    This paper provides an overview of Human Machine Interface (HMI) design and command systems in commercial or experimental operation across transport modes. It presents and comments on different HMIs from the perspective of vehicle automation equipment and simulators of different application domains. Considering the fields of cognition and automation, this investigation highlights human factors and the experiences of different industries according to industrial and literature reviews. Moreover, to better focus the objectives and extend the investigated industrial panorama, the analysis covers the most effective simulators in operation across various transport modes for the training of operators as well as research in the fields of safety and ergonomics. Special focus is given to new technologies that are potentially applicable in future train cabins, e.g., visual displays and haptic-shared controls. Finally, a synthesis of human factors and their limits regarding support for monitoring or driving assistance is propose

    Associating Vehicles Automation With Drivers Functional State Assessment Systems: A Challenge for Road Safety in the Future

    Get PDF
    In the near future, vehicles will gradually gain more autonomous functionalities. Drivers’ activity will be less about driving than about monitoring intelligent systems to which driving action will be delegated. Road safety, therefore, remains dependent on the human factor and we should identify the limits beyond which driver’s functional state (DFS) may no longer be able to ensure safety. Depending on the level of automation, estimating the DFS may have different targets, e.g., assessing driver’s situation awareness in lower levels of automation and his ability to respond to emerging hazard or assessing driver’s ability to monitor the vehicle performing operational tasks in higher levels of automation. Unfitted DFS (e.g., drowsiness) may impact the driver ability respond to taking over abilities. This paper reviews the most appropriate psychophysiological indices in naturalistic driving while considering the DFS through exogenous sensors, providing the more efficient trade-off between reliability and intrusiveness. The DFS also originates from kinematic data of the vehicle, thus providing information that indirectly relates to drivers behavior. The whole data should be synchronously processed, providing a diagnosis on the DFS, and bringing it to the attention of the decision maker in real time. Next, making the information available can be permanent or intermittent (or even undelivered), and may also depend on the automation level. Such interface can include recommendations for decision support or simply give neutral instruction. Mapping of relevant psychophysiological and behavioral indicators for DFS will enable practitioners and researchers provide reliable estimates, fitted to the level of automation

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    A multidisciplinary research approach for experimental applications in road-driver interaction analysis

    Get PDF
    This doctoral dissertation represents a cluster of the research activities conducted at the DICAM Department of the University of Bologna during a three years Ph.D. course. In relation to the broader research topic of “road safety”, the presented research focuses on the investigation of the interaction between the road and the drivers according to human factor principles and supported by the following strategies: 1) The multidisciplinary structure of the research team covering the following academic disciplines: Civil Engineering, Psychology, Neuroscience and Computer Science Engineering. 2) The development of several experimental real driving tests aimed to provide investigators with knowledge and insights on the relation between the driver and the surrounding road environment by focusing on the behaviour of drivers. 3) The use of innovative technologies for the experimental studies, capable to collect data of the vehicle and on the user: a GPS data recorder, for recording the kinematic parameters of the vehicle; an eye tracking device, for monitoring the drivers’ visual behaviour; a neural helmet, for the detection of drivers’ cerebral activity (electroencephalography, EEG). 4) The use of mathematical-computational methodologies (deep learning) for data analyses from experimental studies. The outcomes of this work consist of new knowledge on the casualties between drivers’ behaviour and road environment to be considered for infrastructure design. In particular, the ground-breaking results are represented by: - the reliability and effectiveness of the methodology based on human EEG signals to objectively measure driver’s mental workload with respect to different road factors; - the successful approach for extracting latent features from multidimensional driving behaviour data using a deep learning technique, obtaining driving colour maps which represent an immediate visualization with potential impacts on road safety
    • …
    corecore