375 research outputs found

    Methods for Interpreting and Understanding Deep Neural Networks

    Full text link
    This paper provides an entry point to the problem of interpreting a deep neural network model and explaining its predictions. It is based on a tutorial given at ICASSP 2017. It introduces some recently proposed techniques of interpretation, along with theory, tricks and recommendations, to make most efficient use of these techniques on real data. It also discusses a number of practical applications.Comment: 14 pages, 10 figure

    Application of Transformer Neural Networks to EEG Signal Analysis

    Get PDF

    AUTOMATED ARTIFACT REMOVAL AND DETECTION OF MILD COGNITIVE IMPAIRMENT FROM SINGLE CHANNEL ELECTROENCEPHALOGRAPHY SIGNALS FOR REAL-TIME IMPLEMENTATIONS ON WEARABLES

    Get PDF
    Electroencephalogram (EEG) is a technique for recording asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. EEG signal is well studied to evaluate the cognitive state, detect brain diseases such as epilepsy, dementia, coma, autism spectral disorder (ASD), etc. In this dissertation, the EEG signal is studied for the early detection of the Mild Cognitive Impairment (MCI). MCI is the preliminary stage of Dementia that may ultimately lead to Alzheimers disease (AD) in the elderly people. Our goal is to develop a minimalistic MCI detection system that could be integrated to the wearable sensors. This contribution has three major aspects: 1) cleaning the EEG signal, 2) detecting MCI, and 3) predicting the severity of the MCI using the data obtained from a single-channel EEG electrode. Artifacts such as eye blink activities can corrupt the EEG signals. We investigate unsupervised and effective removal of ocular artifact (OA) from single-channel streaming raw EEG data. Wavelet transform (WT) decomposition technique was systematically evaluated for effectiveness of OA removal for a single-channel EEG system. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), is studied with four WT basis functions: haar, coif3, sym3, and bior4.4. The performance of the artifact removal algorithm was evaluated by the correlation coefficients (CC), mutual information (MI), signal to artifact ratio (SAR), normalized mean square error (NMSE), and time-frequency analysis. It is demonstrated that WT can be an effective tool for unsupervised OA removal from single channel EEG data for real-time applications.For the MCI detection from the clean EEG data, we collected the scalp EEG data, while the subjects were stimulated with five auditory speech signals. We extracted 590 features from the Event-Related Potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with Radial Basis Kernel (RBF) (sigma = 10, cost = 102). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI. We also developed a single channel Electro-encephalography (EEG) based MCI severity monitoring algorithm by generating the Montreal Cognitive Assessment (MoCA) scores from the features extracted from EEG. We performed multi-trial and single-trail analysis for the algorithm development of the MCI severity monitoring. We studied Multivariate Regression (MR), Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression (RR) for multi-trial and deep neural regression for the single-trial analysis. In the case of multi-trial, the best result was obtained from the ER. In our single-trial analysis, we constructed the time-frequency image from each trial and feed it to the convolutional deep neural network (CNN). Performance of the regression models was evaluated by the RMSE and the residual analysis. We obtained the best accuracy with the deep neural regression method

    Tensor Regression

    Full text link
    Regression analysis is a key area of interest in the field of data analysis and machine learning which is devoted to exploring the dependencies between variables, often using vectors. The emergence of high dimensional data in technologies such as neuroimaging, computer vision, climatology and social networks, has brought challenges to traditional data representation methods. Tensors, as high dimensional extensions of vectors, are considered as natural representations of high dimensional data. In this book, the authors provide a systematic study and analysis of tensor-based regression models and their applications in recent years. It groups and illustrates the existing tensor-based regression methods and covers the basics, core ideas, and theoretical characteristics of most tensor-based regression methods. In addition, readers can learn how to use existing tensor-based regression methods to solve specific regression tasks with multiway data, what datasets can be selected, and what software packages are available to start related work as soon as possible. Tensor Regression is the first thorough overview of the fundamentals, motivations, popular algorithms, strategies for efficient implementation, related applications, available datasets, and software resources for tensor-based regression analysis. It is essential reading for all students, researchers and practitioners of working on high dimensional data.Comment: 187 pages, 32 figures, 10 table

    Semantic radical consistency and character transparency effects in Chinese: an ERP study

    Get PDF
    BACKGROUND: This event-related potential (ERP) study aims to investigate the representation and temporal dynamics of Chinese orthography-to-semantics mappings by simultaneously manipulating character transparency and semantic radical consistency. Character components, referred to as radicals, make up the building blocks used dur...postprin

    Error Signals from the Brain: 7th Mismatch Negativity Conference

    Get PDF
    The 7th Mismatch Negativity Conference presents the state of the art in methods, theory, and application (basic and clinical research) of the MMN (and related error signals of the brain). Moreover, there will be two pre-conference workshops: one on the design of MMN studies and the analysis and interpretation of MMN data, and one on the visual MMN (with 20 presentations). There will be more than 40 presentations on hot topics of MMN grouped into thirteen symposia, and about 130 poster presentations. Keynote lectures by Kimmo Alho, Angela D. Friederici, and Israel Nelken will round off the program by covering topics related to and beyond MMN

    Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

    Full text link
    Current learning machines have successfully solved hard application problems, reaching high accuracy and displaying seemingly "intelligent" behavior. Here we apply recent techniques for explaining decisions of state-of-the-art learning machines and analyze various tasks from computer vision and arcade games. This showcases a spectrum of problem-solving behaviors ranging from naive and short-sighted, to well-informed and strategic. We observe that standard performance evaluation metrics can be oblivious to distinguishing these diverse problem solving behaviors. Furthermore, we propose our semi-automated Spectral Relevance Analysis that provides a practically effective way of characterizing and validating the behavior of nonlinear learning machines. This helps to assess whether a learned model indeed delivers reliably for the problem that it was conceived for. Furthermore, our work intends to add a voice of caution to the ongoing excitement about machine intelligence and pledges to evaluate and judge some of these recent successes in a more nuanced manner.Comment: Accepted for publication in Nature Communication

    Augmented Tensor Decomposition with Stochastic Optimization

    Full text link
    Tensor decompositions are powerful tools for dimensionality reduction and feature interpretation of multidimensional data such as signals. Existing tensor decomposition objectives (e.g., Frobenius norm) are designed for fitting raw data under statistical assumptions, which may not align with downstream classification tasks. Also, real-world tensor data are usually high-ordered and have large dimensions with millions or billions of entries. Thus, it is expensive to decompose the whole tensor with traditional algorithms. In practice, raw tensor data also contains redundant information while data augmentation techniques may be used to smooth out noise in samples. This paper addresses the above challenges by proposing augmented tensor decomposition (ATD), which effectively incorporates data augmentations to boost downstream classification. To reduce the memory footprint of the decomposition, we propose a stochastic algorithm that updates the factor matrices in a batch fashion. We evaluate ATD on multiple signal datasets. It shows comparable or better performance (e.g., up to 15% in accuracy) over self-supervised and autoencoder baselines with less than 5% of model parameters, achieves 0.6% ~ 1.3% accuracy gain over other tensor-based baselines, and reduces the memory footprint by 9X when compared to standard tensor decomposition algorithms.Comment: Fixed some typo
    • …
    corecore