199 research outputs found

    Metastability, Criticality and Phase Transitions in brain and its Models

    Get PDF
    This essay extends the previously deposited paper "Oscillations, Metastability and Phase Transitions" to incorporate the theory of Self-organizing Criticality. The twin concepts of Scaling and Universality of the theory of nonequilibrium phase transitions is applied to the role of reentrant activity in neural circuits of cerebral cortex and subcortical neural structures

    EEG Microstate Analysis in Drug-Naive Patients with Panic Disorder

    Get PDF
    Patients with panic disorder (PD) have a bias to respond to normal stimuli in a fearful way. This may be due to the preactivation of fear-associated networks prior to stimulus perception. Based on EEG, we investigated the difference between patients with PD and normal controls in resting state activity using features of transiently stable brain states (microstates). EEGs from 18 drug-naive patients and 18 healthy controls were analyzed. Microstate analysis showed that one class of microstates (with a right-anterior to left-posterior orientation of the mapped field) displayed longer durations and covered more of the total time in the patients than controls. Another microstate class (with a symmetric, anterior-posterior orientation) was observed less frequently in the patients compared to controls. The observation that selected microstate classes differ between patients with PD and controls suggests that specific brain functions are altered already during resting condition. The altered resting state may be the starting point of the observed dysfunctional processing of phobic stimuli

    Tracking brain dynamics across transitions of consciousness

    Get PDF
    How do we lose and regain consciousness? The space between healthy wakefulness and unconsciousness encompasses a series of gradual and rapid changes in brain activity. In this thesis, I investigate computational measures applicable to the electroencephalogram to quantify the loss and recovery of consciousness from the perspective of modern theoretical frameworks. I examine three different transitions of consciousness caused by natural, pharmacological and pathological factors: sleep, sedation and coma. First, I investigate the neural dynamics of falling asleep. By combining the established methods of phase-lag brain connectivity and EEG microstates in a group of healthy subjects, a unique microstate is identified, whose increased duration predicts behavioural unresponsiveness to auditory stimuli during drowsiness. This microstate also uniquely captures an increase in frontoparietal theta connectivity, a putative marker of the loss of consciousness prior to sleep onset. I next examine the loss of behavioural responsiveness in healthy subjects undergoing mild and moderate sedation. The Lempel-Ziv compression algorithm is employed to compute signal complexity and symbolic mutual information to assess information integration. An intriguing dissociation between responsiveness and drug level in blood during sedation is revealed: responsiveness is best predicted by the temporal complexity of the signal at single- channel and low-frequency integration, whereas drug level is best predicted by the complexity of spatial patterns and high-frequency integration. Finally, I investigate brain connectivity in the overnight EEG recordings of a group of patients in acute coma. Graph theory is applied on alpha, theta and delta networks to find that increased variability in delta network integration early after injury predicts the eventual coma recovery score. A case study is also described where the re-emergence of frontoparietal connectivity predicted a full recovery long before behavioural improvement. The findings of this thesis inform prospective clinical applications for tracking states of consciousness and advance our understanding of the slow and fast brain dynamics underlying its transitions. Collating these findings under a common theoretical framework, I argue that the diversity of dynamical states, in particular in temporal domain, and information integration across brain networks are fundamental in sustaining consciousness.My PhD was funded by the Cambridge Trust and a MariaMarina award from Lucy Cavendish College

    Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordDegree of phase synchronization between different Electroencephalogram (EEG) channels is known to be the manifestation of the underlying mechanism of information coupling between different brain regions. In this paper, we apply a continuous wavelet transform (CWT) based analysis technique on EEG data, captured during face perception tasks, to explore the temporal evolution of phase synchronization, from the onset of a stimulus. Our explorations show that there exists a small set (typically 3-5) of unique synchronized patterns or synchrostates, each of which are stable of the order of milliseconds. Particularly, in the beta (β) band, which has been reported to be associated with visual processing task, the number of such stable states has been found to be three consistently. During processing of the stimulus, the switching between these states occurs abruptly but the switching characteristic follows a well-behaved and repeatable sequence. This is observed in a single subject analysis as well as a multiple-subject group-analysis in adults during face perception. We also show that although these patterns remain topographically similar for the general category of face perception task, the sequence of their occurrence and their temporal stability varies markedly between different face perception scenarios (stimuli) indicating toward different dynamical characteristics for information processing, which is stimulus-specific in nature. Subsequently, we translated these stable states into brain complex networks and derived informative network measures for characterizing the degree of segregated processing and information integration in those synchrostates, leading to a new methodology for characterizing information processing in human brain. The proposed methodology of modeling the functional brain connectivity through the synchrostates may be viewed as a new way of quantitative characterization of the cognitive ability of the subject, stimuli and information integration/segregation capability.The work presented in this paper was supported by FP7 EU funded MICHELANGELO project, Grant Agreement #288241. Website: www.michelangelo-project.eu/
    • …
    corecore