2,759 research outputs found

    Review of EEG-based pattern classification frameworks for dyslexia

    Get PDF
    Dyslexia is a disability that causes difficulties in reading and writing despite average intelligence. This hidden disability often goes undetected since dyslexics are normal and healthy in every other way. Electroencephalography (EEG) is one of the upcoming methods being researched for identifying unique brain activation patterns in dyslexics. The aims of this paper are to examine pros and cons of existing EEG-based pattern classification frameworks for dyslexia and recommend optimisations through the findings to assist future research. A critical analysis of the literature is conducted focusing on each framework’s (1) data collection, (2) pre-processing, (3) analysis and (4) classification methods. A wide range of inputs as well as classification approaches has been experimented for the improvement in EEG-based pattern classification frameworks. It was uncovered that incorporating reading- and writing-related tasks to experiments used in data collection may help improve these frameworks instead of using only simple tasks, and those unwanted artefacts caused by body movements in the EEG signals during reading and writing activities could be minimised using artefact subspace reconstruction. Further, support vector machine is identified as a promising classifier to be used in EEG-based pattern classification frameworks for dyslexia

    Network perspectives on epilepsy using EEG/MEG source connectivity

    Get PDF
    The evolution of EEG/MEG source connectivity is both, a promising, and controversial advance in the characterization of epileptic brain activity. In this narrative review we elucidate the potential of this technology to provide an intuitive view of the epileptic network at its origin, the different brain regions involved in the epilepsy, without the limitation of electrodes at the scalp level. Several studies have confirmed the added value of using source connectivity to localize the seizure onset zone and irritative zone or to quantify the propagation of epileptic activity over time. It has been shown in pilot studies that source connectivity has the potential to obtain prognostic correlates, to assist in the diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation studies in large and heterogeneous patient cohorts are still lacking and are needed to bring these techniques into clinical use. Moreover, the methodological approach is challenging, with several poorly examined parameters that most likely impact the resulting network patterns. These fundamental challenges affect all potential applications of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and also its application to cognitive activation of the eloquent area in presurgical evaluation. However, such method can allow unique insights into physiological and pathological brain functions and have great potential in (clinical) neuroscience

    Ensemble of classifiers based data fusion of EEG and MRI for diagnosis of neurodegenerative disorders

    Get PDF
    The prevalence of Alzheimer\u27s disease (AD), Parkinson\u27s disease (PD), and mild cognitive impairment (MCI) are rising at an alarming rate as the average age of the population increases, especially in developing nations. The efficacy of the new medical treatments critically depends on the ability to diagnose these diseases at the earliest stages. To facilitate the availability of early diagnosis in community hospitals, an accurate, inexpensive, and noninvasive diagnostic tool must be made available. As biomarkers, the event related potentials (ERP) of the electroencephalogram (EEG) - which has previously shown promise in automated diagnosis - in addition to volumetric magnetic resonance imaging (MRI), are relatively low cost and readily available tools that can be used as an automated diagnosis tool. 16-electrode EEG data were collected from 175 subjects afflicted with Alzheimer\u27s disease, Parkinson\u27s disease, mild cognitive impairment, as well as non-disease (normal control) subjects. T2 weighted MRI volumetric data were also collected from 161 of these subjects. Feature extraction methods were used to separate diagnostic information from the raw data. The EEG signals were decomposed using the discrete wavelet transform in order to isolate informative frequency bands. The MR images were processed through segmentation software to provide volumetric data of various brain regions in order to quantize potential brain tissue atrophy. Both of these data sources were utilized in a pattern recognition based classification algorithm to serve as a diagnostic tool for Alzheimer\u27s and Parkinson\u27s disease. Support vector machine and multilayer perceptron classifiers were used to create a classification algorithm trained with the EEG and MRI data. Extracted features were used to train individual classifiers, each learning a particular subset of the training data, whose decisions were combined using decision level fusion. Additionally, a severity analysis was performed to diagnose between various stages of AD as well as a cognitively normal state. The study found that EEG and MRI data hold complimentary information for the diagnosis of AD as well as PD. The use of both data types with a decision level fusion improves diagnostic accuracy over the diagnostic accuracy of each individual data source. In the case of AD only diagnosis, ERP data only provided a 78% diagnostic performance, MRI alone was 89% and ERP and MRI combined was 94%. For PD only diagnosis, ERP only performance was 67%, MRI only was 70%, and combined performance was 78%. MCI only diagnosis exhibited a similar effect with a 71% ERP performance, 82% MRI performance, and 85% combined performance. Diagnosis among three subject groups showed the same trend. For PD, AD, and normal diagnosis ERP only performance was 43%, MRI only was 66%, and combined performance was 71%. The severity analysis for mild AD, severe AD, and normal subjects showed the same combined effect

    An improved EEG pattern classification system based on dimensionality reduction and classifier fusion

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Analysis of brain electrical activities (Electroencephalography, EEG) presents a rich source of information that helps in the advancement of affordable and effective biomedical applications such as psychotropic drug research, sleep studies, seizure detection and brain computer interface (BCI). Interpretation and understanding of EEG signal will provide clinicians and physicians with useful information for disease diagnosis and monitoring biological activities. It will also help in creating a new way of communication through brain waves. This thesis aims to investigate new algorithms for improving pattern recognition systems in two main EEG-based applications. The first application represents a simple Brain Computer Interface (BCI) based on imagined motor tasks, whilst the second one represents an automatic sleep scoring system in intensive care unit. BCI system in general aims to create a lion-muscular link between brain and external devices, thus providing a new control scheme that can most benefit the extremely immobilised persons. This link is created by utilizing pattern recognition approach to interpret EEG into device commands. The commands can then be used to control wheelchairs, computers or any other equipment. The second application relates to creating an automatic scoring system through interpreting certain properties of several biomedical signals. Traditionally, sleep specialists record and analyse brain signal using electroencephalogram (EEG), muscle tone (EMG), eye movement (EOG), and other biomedical signals to detect five sleep stages: Rapid Eye Movement (REM), stage 1,... to stage 4. Acquired signals are then scored based on 30 seconds intervals that require manually inspecting one segment at a time for certain properties to interpret sleep stages. The process is time consuming and demands competence. It is thought that an automatic scoring system mimicking sleep expert rules will speed up the process and reduce the cost. Practicality of any EEG-based system depends upon accuracy and speed. The more accurate and faster classification systems are, the better will be the chance to integrate them in wider range of applications. Thus, the performance of the previous systems is further enhanced using improved feature selection, projection and classification algorithms. As processing EEG signals requires dealing with multi-dimensional data, there is a need to minimize the dimensionality in order to achieve acceptable performance with less computational cost. The first possible candidate for dimensionality reduction is employed using channel feature selection approach. Four novel feature selection methods are developed utilizing genetic algorithms, ant colony, particle swarm and differential evolution optimization. The methods provide fast and accurate implementation in selecting the most informative features/channels that best represent mental tasks. Thus, computational burden of the classifier is kept as light as possible by removing irrelevant and highly redundant features. As an alternative to dimensionality reduction approach, a novel feature projection method is also introduced. The method maps the original feature set into a small informative subset of features that can best discriminate between the different class. Unlike most existing methods based on discriminant analysis, the proposed method considers fuzzy nature of input measurements in discovering the local manifold structure. It is able to find a projection that can maximize the margin between data points from different classes at each local area while considering the fuzzy nature. In classification phase, a number of improvements to traditional nearest neighbour classifier (kNN) are introduced. The improvements address kNN weighting scheme limitations. The traditional kNN does not take into account class distribution, importance of each feature, contribution of each neighbour, and the number of instances for each class. The proposed kNN variants are based on improved distance measure and weight optimization using differential evolution. Differential evolution optimizer is utilized to enhance kNN performance through optimizing the metric weights of features, neighbours and classes. Additionally, a Fuzzy kNN variant has also been developed to favour classification of certain classes. This variant may find use in medical examination. An alternative classifier fusion method is introduced that aims to create a set of diverse neural network ensemble. The diversity is enhanced by altering the target output of each network to create a certain amount of bias towards each class. This enables the construction of a set of neural network classifiers that complement each other

    Characterization of ictal/non-ictal EEG patterns and Neuronal Networks in Childhood Absence Epilepsy

    Get PDF
    Childhood absence epilepsy (CAE) is one of the most common pediatric epilepsy syndromes found in children. It is associated with distinct seizure semiology and clear electroencephalographic (EEG) features. In CAE patients, differentiating EEG ictal and non-ictal generalised spikes and waves discharges (GSWDs) is however difficult, since these events have an identical appearance. The differentiation of these two events is very important in a clinical setting as it has a direct effect on diagnosis and management strategies of patients. This study focuses on differentiating ictal and non-ictal discharges at sensor and source level using only surface EEG. Twelve CAE patients having both ictal and non-ictal discharges were selected for this study. For all levels of analysis, frequency ranges of 1-30 Hz containing four important frequency bands (delta, theta, alpha and beta) were used. At sensor level, spectral analysis and functional connectivity (FC) based on imaginary part of coherency, were used to evaluate the spectral changes and channel connectivity at the surface, respectively. At source level, the onset zone for ictal and non-ictal discharges were reconstructed using the eLORETA algorithm, and FC was used again to analyse the neuronal networks. Furthermore, we gave a detailed mathematical background of the EEG, forward and inverse problem, along with the mathematical foundation for the eLORETA algorithm. Additionally, for the first time we prove the correctness of the eLORETA algorithm based on the correct regularization problem. At sensor level, ictal discharges showed significantly higher power compared to non-ictal discharges, followed by FC depicting a desynchronization of channel connections (weaker connectivity) for ictal discharges. At source level, a fascinating observation was that ictal and non-ictal discharges have the same source or onset zone in the brain. However, ictal discharges had a stronger source power compared to non-ictal discharges. FC at source level revealed that the connectivity between certain brain regions and the seeds of interest (source maximum and thalamus) was stronger for ictal discharges, compared to non-ictal discharges. This study clearly shows the significant differences between ictal and non-ictal discharges at sensor and source level using only surface EEG. This study would be a great interest to clinicians, since it could be the potential foundation for future diagnostics research for CAE patients

    Differentiating Epileptic from Psychogenic Nonepileptic EEG Signals using Time Frequency and Information Theoretic Measures of Connectivity

    Get PDF
    Differentiating psychogenic nonepileptic seizures from epileptic seizures is a difficult task that requires timely recording of psychogenic events using video electroencephalography (EEG). Interpretation of video EEG to distinguish epileptic features from signal artifacts is error prone and can lead to misdiagnosis of psychogenic seizures as epileptic seizures resulting in undue stress and ineffective treatment with antiepileptic drugs. In this study, an automated surface EEG analysis was implemented to investigate differences between patients classified as having psychogenic or epileptic seizures. Surface EEG signals were grouped corresponding to the anatomical lobes of the brain (frontal, parietal, temporal, and occipital) and central coronal plane of the skull. To determine if differences were present between psychogenic and epileptic groups, magnitude squared coherence (MSC) and cross approximate entropy (C-ApEn) were used as measures of neural connectivity. MSC was computed within each neural frequency band (delta: 0.5Hz-4Hz, theta: 4-8Hz, alpha: 8-13Hz, beta: 13-30Hz, and gamma: 30-100Hz) between all brain regions. C-ApEn was computed bidirectionally between all brain regions. Independent samples t-tests were used to compare groups. The statistical analysis revealed significant differences between psychogenic and epileptic groups for both connectivity measures with the psychogenic group showing higher average connectivity. Average MSC was found to be lower for the epileptic group between the frontal/central, parietal/central, and temporal/occipital regions in the delta band and between the temporal/occipital regions in the theta band. Average C-ApEn was found to be greater for the epileptic group between the frontal/parietal, parietal/frontal, parietal/occipital, and parietal/central region pairs. These results suggest that differences in neural connectivity exist between psychogenic and epileptic patient groups
    • …
    corecore